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Abstract—This  paper  documents the  creation  of  a
performant, reliable Bluetooth Mesh network for the purpose of
multi-node environmental monitoring of a large area.  The mesh
network  is  then  coupled,  via  a  Gateway  Node,  to  a  Gateway
Server that aggregates and stores the sensor data in addition to
making it  available to other devices on a Wide Area Network.
While environmental monitoring is useful this data can be seen as
a stand-in for a wide variety of sensors and devices.
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I. INTRODUCTION

Wireless  Mesh  technologies  allow  for  the  creation  of
networks that cover a large area where wired networking may
be impractical, expensive, or unappealing. Often, these devices
solely  communicate  amongst  themselves,  with  little-to-no
provision for logging of the generated data. The systems that
can communicate with other devices often travel through the
cloud  to  do  so,  bringing  along  data  privacy  and  security
concerns.

The  system  proposed  uses  the  relatively  new  Bluetooth
Mesh Profile  to  connect  a  series  of  Environmental  Sensors,
strewn across a large area with a mesh-to-http gateway. This
gateway will  be responsible for  aggregating and logging the
Temperature  and  Humidity  data  produced  by  these  Sensor
Nodes,  providing  a  user-friendly  Monitoring  Interface,  and
enabling orchestration with other devices that may be present
on other mesh networks or the local TCP/IP network (intranet).

The  Sensor  Nodes  are  based  on  the  Particle  Xenon
development  board,  which  was  selected  because  it  uses  a

ubiquitous-in-IoT  Nordic  NRF52  series  System  On  Chip
(SoC),  has good support  with Zephyr Real Time Operating
System  due  it’s  feather  form-factor,  is  equipped  with  a
common JTAG style Single Wire Debug (SWD) port, has an
onboard lithium ion battery charger with connector, and it was
on-hand in the needed quantity. The Nordic nRF Connect SDK
with Zephyr Operating System is used to provide the Bluetooth
mesh  support  and  hardware  abstraction.  The  DHT20  I2C
Temperature  and  Humidity  sensor  is  used  to  gather  the
Environmental data. For the purpose of simplicity, all sensor
nodes will Bluetooth Mesh Relay nodes and be mains powered
via a 5v USB adapter.

The Gateway-to-Mesh interface node uses the same Particle
Xenon development board and NCS/Zephyr operating system
as the sensor nodes. The gateway node provides mesh event
data to the gateway server over a USB emulated serial port,
which will also power the gateway node.

The Gateway server is a Raspberry Pi 4 running the Home-
Assistant  Operating  System.  A  Home-Assistant  integration
translates  the  serial  data  from  the  gateway  node  to  update
Home-Assistant Sensor Entities. Home-assistant stores the state
values  for  each  sensor  entity  at  each  change,  displays  the
current  state  and  recent  history  for  user  monitoring  and
provides a means to retrieve stored data for later processing.
Home-assistant is privacy-aware and requires no access to the
internet for its functionality and, if it were given access, only
checks for automated updates, unless intentionally configured
otherwise. 

II. MARKET SURVEY

A. MESH Project Temperature and Humidity Sensor [1]

A  $60  Bluetooth  Mesh  connected  environmental
temperature monitoring solution.  This device is essentially an
existing commercial solution to the sensor nodes proposed in
this  paper.  The  sensors  can  be  bought  individually  or  as  a
bundle with other nodes (e.g. Button, LED, GPIO, etc). While
MESH provides an app that implements a visual orchestration
programming language (i.e. pressing the Button node will turn
on the LED node), they do not sell a commercially packaged
persistent mesh to IP gateway solution. In order to connect to
an orchestration / logging server this solution relies on either a
phone or tablet dedicated to running their app or a Raspberry
Pi3/4 running their packaged Linux distribution. In either case,
remote orchestration and logging is provided by IFTTT (If this
then that), a commercial cloud service.
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Figure 1: The Proposed Environmental Monitoring
System
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B. Blue PUCK T [2]

A $47 small temperature sensor node that transmits data via
Bluetooth  4.0  Low  Energy  (in  beacon  mode)  and  can  be
configured via RFID. There is a version that is compliant with
EN12830  [3] temperature  logging  standards  for  temperature
sensitive goods. This version constantly logs the temperature
within the node and can transmit the logged data to authorized
users. The company that makes the Blue PUCK T makes some
Bluetooth  Mesh  devices  and  has  some  documentation
referencing a Blue PUCK T MESH device, but it is not yet on
the market.

C. Sonoff Zigbee Sensor and Bridge [4]

The $18 Sonoff Zigbee Temperature and Humidity sensor
is similar the the MESH Temperature and Humidity sensor, but
with a little less polish. The device communicates over Zigbee
mesh networks.  The optional  $36 Sonoff  Zigbee  Bridge  [5]
acts as a persistent gateway connecting the Zigbee mesh to the
user’s choice of the eWeLink cloud orchestration service, or to
a local orchestration service like Home Assistant.

III. LITERATURE SURVEY

A literature survey was conducted in order to determine the
state  of the art,  investigate alternative  methods, and identify
areas that may benefit from further research. The results of the
literature survey are listed below. Each paper is presented with
a  brief  summary,  a  description  of  the  problem  the  paper
attempts to solve, a summary of the paper’s contributions, and
an explanation of  the relevance  of  the paper  to the topic at
hand.

A. An Approach of BLE Mesh Network For Smart Home 
Application [6]

Tran  et  al.  presents  a  case  study  for  a  door  lock  that
communicates  with  a  home  security  system  over  Bluetooth
Mesh in order to allow remote control and monitoring of the
door lock through a cloud-hosted website.

1) Problem
Devices that communicate via Bluetooth and/or Bluetooth

Low Energy are practically ubiquitous and are implemented by
not  only  a  wide  plurality of  very  low  cost  microcontroller
system on chips (SoC), but also by many devices the average
person already owns. With the introduction  of the Bluetooth
Mesh protocol, a large-scale device network can operate on top
of the low-power BLE protocol.

2) Contributions
A Bluetooth Mesh system is designed, built, and tested in a

real-world environment. The system consists of the lock node,
a  remote  unlock  controller  node,  two  relay  nodes,  and  a
provisioner node that  also interfaces  the mesh network to  a
cloud server, allowing for remote control and monitoring over
the internet.

Four  experimental  scenarios  were  developed  and  tested:
open area, one room,  two rooms, and two floors. In the open
area scenario, two nodes transmitted between each other at a
distance of just under 30m without packet loss. The one room
scenario takes place in a 30sq meter office environment with
metal obstructions and radio interference (e.g. WiFi, Cellular,

other Bluetooth devices).  5 Nodes were used for this test with
the nodes placed at varying distances and heights. It was found
that  approximately  5-7m distance  at  1.8m height  difference
between the nodes  results in little-to-no drops. The two room
experiment uses one node as the relay to communicate between
the devices in each room. The relay node is located such that it
is  line-of-sight  with  both  nodes  and  is 6.5  meters  to  the
originating node and 7 meters to the end node. The relay to end
node link dropped 18-20% of transmitted packets, whereas the
slightly  shorter  start  to  relay  link  dropped  no  packets.  The
multi-floor tests took two forms, one where the gateway and
relay were on the same floor, with the end node 1 floor higher
(in a stairwell) and one where all three nodes were on different
floors of the same stairwell. The two floor test saw a 2.1 and
5.9% packet drop rate with 6.5m and 3.5m between the start
node and relay and the relay and end node The multi-floor test
saw similar drop rates,  except  that  the 2nd to 3rd floor  nodes
experienced a 17.3 % drop rate at only 3.5 meters between the
nodes.

Tran  et  al.  also  studied  the  power  consumption  of  their
devices and attempted to perform optimizations based on that
data. They found that switching the node into low energy mode
netted a 35% reduction in power. They were unable to gain any
further significant power savings by other means, including a
wake/sleep  power-saving  algorithm.  The  power-saving
algorithm maximized time in the lowest consuming sleep mode
and woke the device to send and receive via Bluetooth. The
authors blame component selection on the development boards
used for consuming too much power regardless of radio state.

3) Relevance
The paper presents an application much like the intended

application. While the some of the details differ,  such as the
use  of  cloud-based  orchestration,  the  system  architecture  is
very similar.  The physical domain is also similar. The paper
covers the issues with WiFi and physical  object  interference
that would be present in the intended application.

B. Bluetooth Mesh Analysis, Issues, and Challenges [7]

This paper provides a detailed summary of Bluetooth Mesh
features and problems concerning node types, responsibilities,
overhead, and configuration parameters. 

1) Problem
BLE is  nearly  ubiquitous.  BLE is  great  for  tracking  the

locations of nodes. Bluetooth mesh is built on top of BLE using
it’s  advertising  and  scanning  states  and  uses  flooding  as
opposed  to  a  routing  protocol.  Relay  nodes  and  re-
transmissions  should  be  limited  and  finely  tuned  to  control
congestion.  The  paper  focuses  on  describing  and  adjusting
Bluetooth Mesh parameters and how they interact between the
layers of the protocol, based on real-world testing, to achieve
reliability, efficiency, low latency, and low packet losses.

2) Contributions
A  significant  contribution  is  a  detailed  summary  of  the

Bluetooth Mesh protocol, network topology, and key features.
Unlike  [8],  Á.  Hernández-Solana  et  al.  differentiates   “low
power” nodes (LPN), friend nodes, and relay nodes. The low
power node example given is a temperature sensor which rarely
needs to receive data from the network, much like the intended



application.  This  is  enabled  by  the  friend  node  which  is
essentially  a  relay  that  stores  messages  for  the  LPN until  it
comes  back  online  to  request  the  messages.  A  proxy  node
relays messages to devices outside of the Mesh (e.g. a server).
A provisioner node configures a device to join the mesh after
the device sends beacon advertisements announcing itself. All
nodes must  pass  encrypted  and  authenticated  messages  with
separate keys for network, application, and device security. The
Advertising Event can transmit  up to 47 bytes,  but after  the
protocol overhead through the various layers, only 10 of these
bytes are available to the user. 

Another  contribution is  the enumeration  of  discrepancies
between the Bluetooth Mesh specification and the realities of
real-world  devices  and  use-cases.  The  Bluetooth  Mesh
specification expects the devices to be scanning or advertising
with as close to 100% up-time as possible, but due to channel
hopping,   packet  processing,  stack  processing,  and  sending
connectable  advertising  packets  there  are  “blind  times”  that
reduce  this  up-time.  Buffering  can  cause  latency  and
undersized buffers can cause dropped packets or cache flushing
(causing unnecessary re-transmission of packets). Repetition of
packets provide more reliability at the cost of higher latency ,
more network congestion, and lower throughput. Inappropriate
random delays can result in timing issues that actually increase
the frequency of  collisions and latency when performing re-
transmissions.  The  random  delays  for  acknowledgment
messages  may incur a  similar  fate  if  not  carefully  bounded.
Likewise, choosing an appropriate time to live value requires
some  adjustment  to  prevent  data  storms  and  undelivered
messages. The high up-time requirements for relaying devices
also  incurs  a  power  consumption  cost.  Over-provisioning
relays can significantly increase the energy consumption of the
network  as  a  whole  (due  to  high  radio  up-time)  while
decreasing  network  reliability  due  to  higher  congestion  and
more frequent re-transmissions.

The paper  also identifies  areas  where  further  research  is
needed to improve Bluetooth Mesh Performance and/or power
usage.  Self-tuning  of  network  parameters  (e.g.  TTL,  re-
transmissions,  delays)  would  make  mesh  networks  easier  to
set-up,  reduce  fragility  to  changes  (as  simple  as  moving  a
node),  and improve performance of poorly optimized nodes.
Combining of copies of the same message  received can reduce
needless  re-transmission.  More  and/or  different  bearers  can
allow  for  greater  byte  efficiency  and  larger  payloads  (via
extended  advertising  PDUs)  or  packet  chains.  The  current
requirement  for  high  up-time  on  relay  nodes  makes  it
unreasonable to use battery powered relays.  The 5ma power
consumption figure cited in the paper sounds quite small, but it
would drain a 10,000mAh battery pack in under 3 months.

3) Relevance
Á. Hernández-Solana et al. Provides a clear summary of the

Bluetooth Mesh protocol, warts included. Attention is drawn to
some of the configuration pitfalls that lie in wait due-in-part to
the  wide  adjustment  range  available  on  some  of  these
parameters. Importantly, some “reality-checks” are dished out
that  could  prevent  developers  intending  to  use  the  protocol
from being caught unaware. Particularly shocking is that only
11 bytes of application data can be sent per packet,  but that

doesn’t  particularly  detract  from the  intended  application  as
sending  environmental  data.  Another  pain  point  is  the  high
power consumption caused by the apparent need for high on-
time  for  relay  nodes,  which  would  make  battery-powered
applications difficult.

C. Features of Building MESH Networks Based on Bluetooth 
Low Energy 5.1 Technology [9]

This paper considers the Bluetooth standard specification
version  5.1,  evaluating  its  features,  and  (dis)advantages
compared to 802.15.4 protocols (Zigbee and Thread). 

1) Problem
Evaluate  performance  in  a  multi-story  building  made  of

reinforced  concrete.  Explore  possibilities  of  building  BLE
mesh  networks  using  modern  microcontrollers.  Discuss  the
new locating features released in Bluetooth 5.1. 

2) Contributions
Zyulin et al. describes the method by which the Bluetooth

5.1 specification determines the location of the nodes, down to
an  accuracy  of  several  centimeters.  Multiple  antennas  are
required  at  one  node  and  either  Angle  of  Arrival  (multiple
antennas  at  transmitter)  or  Angle  of  Departure  (multiple
antennas at receiver) can be used. The data received from the
antenna array is used to determine direction which is combined
with the range in order to solve for position.

Bluetooth mesh is compared  to the Zigbee,  which offers
better data transfer security at low speed and range, and Thread
protocols, which offers high speeds at short ranges. The  paper
cites  data  collected  by  Silicon  Labs  [10] which  directly
compared  the three  protocols.  In  this test  it  was found that,
although the data transfer rate of Bluetooth mesh is low, it is
almost  completely  unaffected  by  the  number  of  hops  (relay
node  receives  and  re-transmits),  unlike  Thread  and  Zigbee,
which both decrease  exponentially with each additional  hop.
Data  transmission  distance  is  similar  between  the  mesh
protocols with roughly a 10% increase from Zigbee to thread
and thread to BLE. There is a BLE long range protocol which
transmits 2-3 times further than the mesh protocols, but it is not
currently implemented in the Bluetooth Mesh protocol.

After this comparison, the authors focus on the performance
of  the  Bluetooth  Mesh  network.  A  sample  application  was
created that continuously transmitted the Morse code for S-O-S
from the start node, over the mesh, which is received by the
end node and displayed on a LED. This application is used to
benchmark the signal quality in various connection scenarios
throughout the multi-story building. A summary of the error
thresholds  follows:  no  errors  were  found  when  transmitting
down a  40m hallway,  errors  were  found  when  transmitting
across 5 floors (one relay hop per floor), Connection dropped
out entirely across 3 floors (no errors on 2 floors), errors were
found  when  transmitting  across  5  flights  of  stairs  (in  a
stairwell), and errors were found when transmitting through 3
classroom  walls.  The  floors  were  150-180mm  reinforced
concrete and the walls were 100mm thick.

3) Relevance
Of the papers considered, this covers the nearest to current

release  version  of  the  Bluetooth  Specification  (v5.2)  and



provides a good comparison between the  three most common
mesh protocols  (Bluetooth Mesh and  802.15.4-based  Zigbee
and Thread). The performance of the Bluetooth Mesh network
appears to have much longer range than shown in [6], but this
could be attributed to the different Bluetooth interfaces used.
The difference may also be due to the method of determining
connection  quality,  where  Zyulin  et  al.  used  a  qualitative
approach, that, depending on application design (not discussed
in the paper), could be much more tolerant to packet loss than
the packet counting method used in Tran et al.

D. IEEE 802.15.4 Thread Mesh Network – Data Transmission
in Harsh Environment [11]

This paper presents a similar premise to Tran et al. [6], but
implements  the  OpenThread  802.15.4  protocol  stack  on  the
NRF52840 SoC instead of Bluetooth Mesh. A mesh connected
temperature sensor and raspberry pi based gateway are given as
an example application.

1) Problem
IPv6  is  implemented  on  top  of  OpenThread  with  the

6LoWPAN protocol, enabling internet  protocol (IP) v6 to be
transmitted  over  the  mesh network via a  6LoWPAN border
router.  Going  further,  the  Constrained  Application  (COAP)
protocol is used to provide more reliable communication.

The paper also provides a concise description of the Thread
network  protocol  and  topology.  An  example  hardware  and
software solution is developed, tested, and analyzed.

2) Contributions
The  Thread  network  topology  is  very  similar  to  the

Bluetooth  Mesh  network.  Packets  being  transmitted  to/from
End  Devices (which  can  operate  in  a  low  power  mode  if
connected to only one router) are received and re-transmitted
by  router  nodes (equivalent  to Bluetooth Mesh relay nodes).
Packets are encrypted in transit.  With the implementation of
6LoWPAN Thread nodes can communicate directly via IPv6
with external servers on an IP network.

The  example  solution  is  an  indoor  temperature
environmental condition monitor that transmits a 128kB packet
every minute to a server. The server logs the data and provides
a dashboard display of the data, served over  HTTP via LAN.
The sensor packets are time-stamped so that they can be sent
inconsistently (non-real-time). The Border Router server acts as
the gateway  connecting  the  Thread  mesh network  to  the  IP
network  and  runs  the  OpenWRT  Linux  distribution  for  the
operating  system.   The  Thread  network  interface  is  a
NRF52840  development  board  running  the  OpenThread
protocol  implementation  which  is  connected  to  the  border
router  via  USB.  The  border  router  runs  a  COAP server  to
provide reliable UDP protocol messaging on top of the mesh
IPv6  protocol.  COAP adds  reliability  by  requiring  message
acknowledgment  and  providing timeouts  and re-transmission
when a packet is determined to be lost. The sensor devices use
the same NRF52840 SoC as the Border Router on a custom
PCB with integrated environmental sensors, PCB antenna, and
coin cell battery holder. The device can determine whether it is
powered from battery or the USB connector.  When powered
via USB the device configures itself as a Router Device. When
powered via battery the device configures itself as a low power

Sleepy  End  Device.  The  end  devices  implement  a  state
machine with RTC timer and radio transceiver event interrupts
in order  to maximize battery life by maximizing sleep time.
Once  a  minute  the  device  wakes  up,  takes  a  sensor
measurement, packages the measurement data as json data in a
COAP packet, and sends it to the logging server over the mesh
network. The COAP implementation handles ACK receipt and
re-transmission as required.

Testing of the solution was performed in a 5 story research
laboratory with brick walls, concrete ceilings/floors, and a large
amount  equipment  producing  both  RF signals  and  noise.  In
order to provide reliable, redundant radio links (at least 3 links
per device), four to five  Thread router nodes are deployed on
each floor, preferring open areas and hallways for best results.
The sensor nodes are deployed in random places throughout the
building.  Testing  was  done  with  and  without  the  COAP
protocol enabled. When COAP was not used, messages were
transported  using  simple  UDP packets  (no  acknowledgment
and re-transmission). In this configuration, packet loss rate was
approximately 12% without COAP, and effectively 0% with
COAP. Naturally, the 12% loss remains, but re-transmissions
ensure that data eventually reaches the desired location. Brief
network outages were noticed while the mesh was rearranging,
but once the mesh was re-established the affected packets were
successfully re-transmitted.

3) Relevance
Much  like  the  intended application  of  this  paper,  the

example  application  used  in  Rzepecki  et  al.  is  a  mesh
connected temperature sensor and a Raspberry Pi acting as a
gateway connecting the mesh to an IP network. The network
topology used is by Thread is very similar to Bluetooth mesh.
Also,  the  IETF  is  working  on  a  draft  standard  similar  to
6LoWPAN to  apply  the  IPv6 protocol  on  top  of  Bluetooth
Mesh.

E. Comparison of the Device Lifetime in Wireless Networks 
for the Internet of Things [12]

This paper compares the lifetime (energy consumption) of
several  prominent  wireless  networking  technologies  used  in
IoT. The lifetime was based on the the platform being powered
by a pair of AAA batteries (13.5kJ) All technologies use the
6LowPAN protocol (or the closest approximation available) to
keep  protocol  overhead  as  similar  as  possible  amongst  the
technologies. The energy consumption figures account for re-
transmission  and  inactive  consumption,  thus  potentially
allowing  for  an  energy  intensive  technology  to  still  be
competitive if it has the bandwidth to transmit more data less
frequently.

1) Problem
Many IoT devices,  like  the  intended  application  rely  on

battery power,  and therefor  rely on very low power wireless
networking  technologies  to  maximize  battery  life.  802.15.4
networking has long been considered a standard for very low
powered  devices,  but  new technologies  challenge  that  status
quo. This paper compares  estimated battery lifetimes among
802.15.4, 802.11b Power Saving Mode, BLE, 802.11ah, LoRa,
and SIGFOX.

2) Contributions



The analysis found that BLE platforms had a much higher
lifetime than other technologies when transmission was more
frequent  (1  second  Application  Period).  As  transmissions
become less and less frequent, sleep-mode power consumption
becomes  more  important  than  TX/RX  power  consumption.
When  a  100  second  Application  Period  was  used,  the
performance  was  more  similar  among  BLE,  802.15.44,  and
some  802.11  platforms.  In  those  cases,  most  BLE
implementations  outperformed  802.15.4,  and  most  802.11
implementations  outperformed  the  worst  802.15.4  (TelosB).
SIGFOX and LoRa (EU variant) had the worst lifetime, by far
and are only competitive when transmitting less than 500 bytes
once per day. In all scenarios tested, BLE offered the highest
lifetime.  The  higher  bitrate  of  BLE  is  what  allows  it  to
outperform 802.15.4.  This was validated by testing the various
bit-rates  available  to  BLE  and  802.15.4.  It  was  found  that
250kbps 802.15.4 has an equivalent lifetime to BLE at 500kbps
at low packet sizes and BLE at 125kbps at higher packet sizes.
When  802.15.4  was  tweaked  to  2Mbps  the  same  was  seen
when compared to BLE 2Mbps and 1Mbps.

The take-away of this paper is that in order to maximize the
lifetime of an IoT device, the device should transmit as little
data,  as  infrequently,  and  as  fast  as  possible  in  order  to
maximize  sleep  time.  Additionally,  the  next  most  important
finding was that BLE was the best technology tested, in terms
of  energy  consumption,  when sending small  data packets  at
medium and high data rates.  Neither  of  these points  change
when 20% packet losses (and subsequently, re-transmissions)
are introduced. In other words, the lifetime  does go down, as
expected, but the ranking of the technologies does not change.

3) Relevance
Given  that  the  intended  application  is  to  transmit

temperature  data  across  a  multi-hop  network,  this  paper
confirms that BLE and 802.15.4 would be the most appropriate
technologies  to  investigate.  Ambient  air  temperature  and
humidity can only change so fast. Transmitting data more often
than  once  a  minute  is  unlikely.  Likewise,  the  payload
transmitted from the sensor nodes is expected to be only a few
bytes. This should result in a multi-year lifetime.

Morin et al also provides a concise summary of the wireless
technologies  investigated,  focusing  on  their  use  in  a  low
energy,  battery  operated  node  that  transmits  infrequently.
Beacon-enabled 802.15.4 enables low power multi-hop meshed
networking.  The  coordinator  /  relay  nodes  send  a  beacon
requesting connector nodes to send data. This method handles
the synchronization issue brought up in  [11] at a much lower
energy cost than constant radio operation. Also, Bluetooth Low
Energy specification, as of version 5.0, does not support a true
mesh, but instead a scatternet, which is similar, but more like a
collection  of  trees  than  an  interwoven  mesh.  This  is  a
distinction that I had not seen made, yet and may make mesh
configuration more challenging. This may push 802.15.4 as a
preferred solution over the somewhat-longer-lived BLE option.

F. Understanding the Performance of Bluetooth Mesh: 
Reliability, Delay, and Scalability Analysis [8]

This paper evaluates the performance and scalability of the
Bluetooth  mesh  protocol.  The  system  is  evaluated  through

extensive simulations, including a model of a real-world office
environment  with  WiFi  interference  mapped  from  collected
data.  The bulk of this paper is concerned with the tuning of
protocol  parameters  for  minimal  packet  loss  and corruption,
latency, and network congestion.

1) Problem
Previous Bluetooth specifications did not support a mesh

topology for BLE, opting instead for a star topology, or, at best,
a scatternet as discussed in  [12].  A variety of proprietary and
research mesh schemes have been attempted to rectify this, but
all lacked standardization and interoperability required to bring
wide adoption. This has been corrected with the 2017 release of
the Bluetooth Mesh specifications. Although it is based on the
(much older) BLE protocol stack, the mesh network is different
enough that it needs it’s own performance studies. Because the
protocol is so new, there are very few studies that analyze BLE
mesh network performance with respect to latency, quality of
service, tuning, and scalability.

2) Contributions
A significantly useful contribute of the paper was a concise

summary of the transmission/receive model of Bluetooth Mesh.
Bluetooth  Mesh  is  designed  without  the  need  to  establish
connections among devices in the network by transmitting via
the  advertising  (ADV)  /  scanning  scheme  of  BLE.  The
transmitting (ADV) devices send the data packet on each of the
3  channels  with  a  time  interval  between  each  transmission
denoted  as  TinterPDU.  During  the  ADV  The  transmission
model is known as managed flooding, where all nodes receive
all  messages  from other  nodes  in  direct  radio  range.  Relay
nodes  will  rebroadcast  the  message  to  reach  more  distant
nodes. Time to live (TTL) is implemented to prevent packet
storms. This allows messages to reach their destination through
multiple  network  paths,  at  the  cost  of  increasing  collision
probability.

Randomization of the advertising event timing (TinterPDU)
and idle timing (back-off) can help prevent, or at least recover
from,  network collisions  and  prevent  continuous  masking.
Masking is where two nodes’ advertising and scanning times
never overlap, or do overlap but never on the same channel. In
simulation,  this  randomization  was  not  found  to  negatively
affect  the  network.  However,  re-transmitting  PDUs  can
increase  packet  latency  and  network  congestion.  A  single
repetition  was  found  to  be  a  good  trade-off  with  a  25%
improvement in packet loss rate at the cost of a 30ms delay,
end to end.

Decreasing  advertising  event  duration  (via  shorter
TinterPDU values) was found to be beneficial with respect to
latency  and  network  congestion,  but  is  more  susceptible  to
radio  noise.  The shorter  event  makes it  more  likely  that all
three PDUs overlap the noise event. Likewise, a longer scan
interval is more likely to receive a matching PDU or a noise
event.  Short  TinterPDUs  (1-2ms)  matched  with  minimal
ScanIntervals  (10ms)  achieves  a  100%  end-to-end  packet
success rate when noise events are not modeled.

In order to understand the behavior of the effects of WiFi
on Bluetooth Mesh, a mesh topology was designed to fit within
a real  office space and tested against  WiFi interference map



data collected from that office space. Naturally, during times of
greatest  WiFi  traffic  Bluetooth Mesh end-to-end packet  loss
was highest and lowest during times of lowest WiFi Traffic.
There  was  also  a  clear  effect  on  the  node-to-node  packed
success  rate  due  to  the  presence  of  WiFi  Traffic,  with
significant  reductions  for  the  nodes  with  the  the  most
interference.  There are newer,  secondary ADV channels  that
became part of the Bluetooth 5.0 core specification, but it was
not available in time for publication. The additional channels
would decrease channel interference by allowing the network
designer to move the channels “further away” from the WiFi
channels.

3) Relevance
Based on the findings of [6], [12] 802.15.4 and traditional

BLE  have  comparable  range  in  an  obstructed,  noisy
environment  while  BLE has  a  power  advantage  due  to  the
ability.  The  parameter  tuning  discussed  in  this  paper,  when
combined  with  the  “minimal  on-time”  approach  should
improve the performance and power consumption of the much
more active relay nodes used in  a mesh topology. This gives
some credence to the feasibility of battery powered relay nodes.

IV. BLUETOOTH MESH

Bluetooth MESH is a subset of the the Bluetooth standard,
first introduced in version X.X. The mesh network messages
are built on top of Bluetooth Low Energy (BLE) Advertising
bearer  (ADV).  However,  due  to  the  overhead  of  the  mesh
network  only  a  maximum  of  11  8-bit  bytes  (out  of  the
maximum  of  265  bytes  in  a  link  layer  packet)  can  be
transmitted in a single, unsegmented payload.

A. Bluetooth Mesh Node Roles

1) Relay Node
Relay  nodes  can  be  thought  of  as  the  main  trunk  and

branches  of  the  mesh  network.  These  devices  consume  a
relatively  high  amount  of  power  because  the  radio  is
continuously  receiving  and  transmitting  (the  NRF52840
specifies roughly 6mA of power during transmit and receive
[13]). Each message that the Relay node receives, that is not
stored  in  its  recent  message  cache  and  has  a  Time-to-Live
(TTL) value greater than 1, is retransmitted to be received by
all  other  nodes  within  range.  See  Mesh  Sensor  Node  1  in
Figure 2 for an example of this retransmission.

2) Friend Node
A Friend Node stores  messages  Addressed  to  one of  its

registered  Low  Power  Nodes.  Once  the  Low  Power  Node
comes  back  online,  the  Friend  Node  will  forward  those
messages to the low power node. A Friend node is usually also
a Relay node since the friend node needs to  leave its  radio
powered  on  to  receive  mesh  messages  in  addition  to  the
periodic friendship messages from its low power nodes.

3) Low Power Node
A  lower  power  node  (LPN)  keeps  its  radio  off  for  the

majority  of  the  time  to  save  power.  The  low  power  node
periodically  transmits to and receives from its friend node. In
order  to  facilitate  this,  whenever  the  low power  node  does
transmit, it  makes an appointment to receive from the Friend
node. This appointment consists of a delay and a window. In

simpler terms, the LPN tells it’s friend that in (for example)
100 milliseconds it will listen for 20 milliseconds and then go
back to sleep. After at least 100 milliseconds the Friend node
will transmit every message it has queued up for the LPN to the
LPN. This friendship allows  battery operated devices to join
the mesh network without  expending their  power  budget on
constant  scanning  and  retransmissions  required  by  Relay
nodes. Because of this, Low Power Nodes are leaf nodes in the
Bluetooth Mesh tree. They are only able to talk to the node it is
friends with. An LPN is only allowed to have one friend. It
must  cancel  its  old  friendship  before  it  can  start  a  new
friendship.

4) Proxy Node
Proxy Nodes transmit and receive mesh messages to/from

devices  that  do  not  support  the  Advertising  bearer,  but  do
support the BLE point-to-point GATT bearer.  The Proxy node
takes the role of the GATT Client. The Gatt server provides the
Mesh Proxy Data In (UUID 0x2ADD) and Mesh Proxy Data
Out (UUID 0x2ADE) characteristics in addition to the Client
Characteristic  Configuration descriptor  (UUID 0x2902)  [14].
The Proxy node (GATT Client) then enables notifications for
the Mesh Proxy Data Out  characteristic.  Messages from the
Mesh network are then written (without response) to the Mesh
Proxy Data In characteristic whereas messages from the BLE
device are read from the Mesh Proxy Data Out Characteristic
by the Proxy node as demanded by the notification. It is worth

Figure 2: Mesh Node Data Model



re-emphasizing  that  this  proxy  feature  transports  mesh
messages.  The BLE-GATT-only device will  still  need to  be
able  to  consume  and  produce  mesh  messages  in  order  to
communicate.

B. Bluetooth Mesh Data Model

The Bluetooth mesh data model follows an object-oriented
design  pattern  [15].  A  Node  has  a  set  of  Elements,  each
Element has a  set  of  Server  and/or Client  models,  and each
Client or Server model has a set of states and properties. 

Bluetooth Mesh Properties are instances of characteristics
which are identified by Unversally Unique Identifiers (UUID)
[15]. These characteristic definitions are shared with the BLE-
GATT profile for which the Bluetooth Special Interest Group
(SIG)  specifies  their  data  structure  representations  [16].  The
UUID of each Mesh Property  [17] is specified by The Mesh
Working Group, which is also part of the SIG, but the property
definitions  are  not  shared  with  any  other  part  of  the  larger
Bluetooth  Specification.  There  are  currently  182  usable
properties defined (0x00 is defined as prohibited) to cover a
wide variety of data types and use cases.

Bluetooth Mesh Models can be defined by either the SIG or
a by a registered vendor. SIG models are identified by a 16bit
UUID whereas  vendor models are defined by a 32bit UUID
consisting of a 16bit company identifier and a 16 bit vendor
specific  model  identifier  [18].  Only  the  SIG  models  are
considered for the purposes of this paper because the Vendor
model specifications are vendor specific and are not intended to
be used by other  parties (unless published by the vendor or
reverse  engineered).  There  are  two  types  of  SIG  models
Foundation models and SIG adopted models. There are only 4
SIG Foundation models: Configuration Server and Client, and
Health Server and Client. The Configuration server/client pair
are  used  to  store  and  change  (respectively)  mesh
communication  settings  for  each  node,  such  as  whether  the
node is configured as Relay node, how many retransmits the
node sends for  each message,  the keys for  the network and
applications, heartbeat, and so on. The Health server/client pair
deal  with  faults,  the  health  period,  and  the  attention  state
(which causes the device to do something to identify itself in
the physical domain, like blink LEDs or beep). Each node on
the Bluetooth Mesh network must have a Configuration Server
and a Health Server. The SIG adopted models are defined in
[19],  which  specifies  52  server  and  client  models.  These
models  are  classified  into  4  model  groups:  Generic  (on/off,
power  status,  battery  status,  etc),  Sensors,  Time and Scenes
(time, scheduling, preset states, etc) , and Lighting (lightness,
hue, saturation, etc). 

A mesh node has at least one element and the number and
composition of the elements in a node is static. If the elements
need to change (e.g. for a firmware update), the node must be
reprovisioned  [18].  The  elements  may  only  contain  one
instance of a model. A rectangular box fan with 2 independent
fan motors would have 2 elements, each containing a Generic
On/Off Server Model that controls a fan. One of the elements
would  be  the  primary  element,  which  would  contain  the
Foundation  models.  Each  element  is  given  an  identifying
unicast  address  when provisioned,  starting from the primary
element  if  more  than  one  element  is  present.  This  element

address  is  how mesh messages address their intended target.
There are also virtual address groups which can target multiple
elements.  Keeping  the  dual  fan  example,  a  virtual  address
could be used to turn both motors on with only one message.

C. Bluetooth Mesh Dataflow

Figure 3: Data Flow of Sensor Node Publication
Event in Meshed Environmental Monitoring System

Unlike  other  meshed  networks  Bluetooth  Mesh  network
eschews routing protocols in favor of a lighter weight, but less
deterministic “flooding” dataflow.  Each relay node transmits
not only its own mesh messages, but also any mesh message it
has  received  that  was  not  already  in  its  recent  network
messages cache. See Figure 2 for an example of how a packet
flows across the mesh network.

D. Provisioning

For  the  node-side  of  provisioning,  the  NCS  provides  a
reference  implementation  of  a  Zephyr  provisioning  process
handler,  intended  for  use  on  Nordic  development  kits.  The
Provisioning  handler  implements  four   of  Out  of  Bounds
authentication  methods.  The   Display  Number  and  Display
String  are  not  likely to  be suitable  for  a  user-facing  device
because they print a secret number or string, respectively,  to
the Application Console serial port, which is typically used for
diagnostics during development of the Zephyr application. The
blink output and push-button input OOB provisioning methods
are much more reasonable to for a user to interact with. The
blink output method blinks an on-board LED 1-10 times where
the number of blinks is the OOB code that is entered into the
provisioning  application.  The  push-button  input  method
requires  the provisioner to push a button on the node being
provisioned a number of times (1-10) equal to the OOB code
generated  by  the  provisioner.  Both  methods  were  used
successfully on the Particle Xenon development kit, so there is
hope that other nRF52-based boards that implement the feather
footprint may also use the NCS reference provisioning handler
without significant modification. 

A series  of  security  vulnerabilities  were  disclosed  in  the
Out-of-band (OOB) secret  provisioning  process  on May 24,



2021  [20]. The only provisioning method that is unaffected by
these vulnerabilities  is  the use of  an OOB value with OOB
transfer of public keys [21]. This involves storing a randomly
generated OOB value and public key pair in the unprovisioned
node’s non-volatile memory before release to a customer (like
a  UUID  or  randomized  serial  number  assigned  while
programming each node’s microcontroller). The unprovisioned
node will need to provide a means for the provisioner to learn
the provisionee’s public key and static OOB value, such as a
QR  code  printed  on  the  device’s  packaging.  During
provisioning  the  the  provisioner  will  use  the  provisionee’s
public key to start the key exchange at the beginning of the
provisioning  process  and  provide  the  provisionee  with  the
encrypted  OOB value.  The provisionee will  only accept  the
provisioning attempt if the decrypted OOB value matches the
value  stored  in  the  provisionee’s  non-volatile  memory.
Unfortunately this vulnerability was not noticed in time to be
included in the system described in this paper. Future efforts
should  follow  the  security  recommendations  of  the  Zephyr
Project.

V. NORDIC NRF CONNECT SDK & ZEPHYR OS

The  Nordic  nRF  Connect  SDK  (NCS)  is  based  on  the
Zephyr Operating System. The Zephyr operating system is a
light  weight  OS  targeting  resource-constrained
microcontrollers.  The  Zephyr  Kernel  offers  threading  in
various flavors (including POSIX pthreads),  interrupt service
routines,  synchronization  services,  message/data  passing
services,  and  power  management  services.  On  top  of  this,
Zephyr  uses  a  Linux-kernel-like  devicetree  to  describe
hardware,  hardware  abstracted  drivers,  and  of  course,  what
pushes many to use an RTOS, a robust networking stack. The
NCS  builds  on  top  of  this  with  additional  driver  support,
utilities,  libraries,  and  examples.  The  NCS  documentation
includes  not  only  documentation  for  the  SDK,  but  also  the
documentation  for  the  linked  versions  of  Zephyr  and  other
Nordic Libraries in one convenient place [22].

A. Zephyr Bluetooth Stack

Zephyr’s  Bluetooth  stack  consists  of  3  layers:  host,
controller,  hardware  interface.  Within  a  mesh  The  NCS
provides  an  alternative   controller  layer,  the  SoftDevice
Controller,  that  interfaces  with  its  own  hardware  interface
libraries. Although the NCS SoftDevice Controller features a
more  complete  implementation  of  the  Bluetooth  5.2
specification, the NCS documentation recommends using the
open-source  Zephyr  Bluetooth  LE  Controller  for  mesh
applications.  The  Host  layer  is  not  used  within  the  mesh
network.  This recommendation was followed for  the system
implemented in this paper.

B. Bluetooth Mesh Profile

The  Zephyr  OS  Bluetooth  Mesh  Profile  implementation
closely  follows  Bluetooth  Mesh data  model.  For  the  Sensor
Nodes  implemented  in  this  paper  the  current  value  of  the
temperature sensor is periodically sampled from the sensor by
the sensor driver. Once sampling is completed the new value is
then converted to the Temperature characteristic representation
and used to update the Precise Present Ambient Temperature
Property  (UUID 0x0075).  The Property is  a  member  of  the

Sensor Server Model (UUID 0x1100) and the Sensor Server
Model is a member of the primary (and only) element on the
Node.  Likewise,  the  Humidity  value  is  translated  to  the
Humidity  Characteristic  representation,  which  updates  the
Present Ambient Relative Humidity Property (UUID 0x0076),
which is also a member of the Sensor Server Model. Because
these  two  properties  represent  the  same  physical  sensor,  or
from another point of view, are sensors that measure different
properties of the same physical object, they can be part of the
same Sensor Server Model under the single primary element. If
the  Sensor  Node’s  sensors  measured  two  locations,  then  it
would  need  two  elements  each  containing  a  Sensor  Server
Model (a server model for each sensor, one instance of a sensor
per element).

C. USB Device Stack

Zephyr OS has a hardware independent USB that supports
a  variety  of  Communications  Device  Classes  and  Human
Interface  Device  classes  (HID).  The  interface  for  the  USB
CDC ACM implements  the  UART driver  API.  This  allows
using the on-chip usb peripheral to act as a serial interface with
almost  no  configuration.  The  major  constraints  to  using  the
USB  stack  as  a  UART  are  that,  prior  to  USB  stack
initialization,  any data  written to the UART is lost,  and the
USB device must be connected to a host that has opened the
USB CDC ACM “serial port”. Attempt to write to or read from
the USB uart in the zephyr application, in my testing, resulted
in instability and resets. The USB UART implements a virtual
DTR signal that is set once the connection is made. Poll this
line before attempting to write the first byte to UART. 

D. Threading

Workqueues  use  a  dedicated  thread  to  pull  jobs  from a
FIFO queue, perform their work, and yield to any other threads
before grabbing a new job from the queue. The Work queue
sleeps  when  the  queue  is  empty.  The  Sensor  and  Gateway
nodes developed for this paper rely on scheduling delayable

Figure 4: State Model of Gateway Node



work items being processed by the Workqueue thread for their
non-mesh-stack functionality. A Delayable work item is similar
to the standard Workqueue work item, but is held by the kernel
for a time specified when scheduling the work item. After that
time has expired the kernel then adds the delayable work item
to  the  workqueue.  The  Sensor  nodes  use  the  workqueue  to
schedule the Temperature and Humidity measurements every
30  seconds.  The  Gateway  node  schedule  a  job  every  100
milliseconds to check if there’s a message waiting to be put on
the USB UART from the mesh event message queue.

E. Hardware Abstraction

Zephyr  uses  a  devicetree  and  the  Linux  kconfig
configuration system to configure the drivers, pin definitions,
and hardware peripheral at compile time allowing for greater
abstraction.  For  example,  an  application  using  an  I2C
peripheral is defined to use pin X and Y on one microcontroller
board. To port that application to a different microcontroller on
a different  board,  the device tree is  modified to set  the I2C
device to the new locations and be driven by a different I2C
hardware abstraction driver. If the new board has multiple I2C
ports, then the unused ports can be disabled in the kconfig. It is
worth  pointing  out  that  device  tree  can  only  configure
supported boards. If a custom board is developed, that board
needs to be ported in to zephyr. These board support files can
be part of the application repository and do not require forking
zephyr to add support for proprietary boards.

F. The West Meta-Build System

West  is  a  python  application  developed  to  manage  and
automate Zephyr’s Cmake build system. West can be used to
automate devicetree overlay application for a particular board.
This allows the example applications that were developed for
Nordic development kits to work on third-party development
kits like the feather-compatible Particle Xenon boards used for
this paper by only changing the board parameter provided to
west. West can also automate running the cmake build, flashing
the  new  build  onto  the  microcontroller,  and  attach  a  gdb
session to the newly programmed microcontroller.  West will
also mange the libraries used in the project, including pulling in
Zephyr and the NCS. Libraries are specified,  with a version
number, and a path to a git repository in the west manifest. On
first  build west  will  clone all  repositories,  launch Cmake to
build  each  of  them  as  libraries  and  link  them  in  to  your
application. This is a very powerful tool that can ease manually
controlled build system headaches.

VI. HOME-ASSISTANT

Home-assistant  is  a  software  platform  intended  for  the
display and orchestration of the variety of IoT devices that can
be found in the home. The Home assistant front-end, named
Lovelace, provides a convenient dashboard for displaying the
current state of the system and configuring automations, add-
ons, integrations, and the Home-Assistant platform itself. 

One of  the  most  common methods  of  deploying  Home-
Assistant, and also the one used for this paper,  is to use the
Home-Assistant Operating System (HAOS) on a Raspberry Pi
single-board computer. HAOS is developed and maintained by
the Home-Assistant project as an easy means of deploying and
maintaining the Home-Assistant software.

A. Ingesting Mesh Events Packets with Home-Assistant

A  custom  integration  was  developed  that  opens  the
Gateway Node’s  USB/Serial  connection and processes  mesh
events  into  a  Home-Assistant  state_changed  event.  The
integration defines the Sensor Entities on initialization. For a
production-ready  solution,  the  integration  should  be  able  to
create new entities whenever a new sensor node’s mesh event
is processed. For the sake of time, the Sensor Entities used in
this paper are hardcoded to be created during initialization with
friendly  names  and  unit-of-measurement  correlated  to  their
respective node addresses and sensor property IDs, whether or
not data has been received from them.

B. Home-Assistant Data Organization.

Each event within Home-Assistant is logged, with context,
in its internal  database.  By default,  a local  (w.r.t  the Home-
Assistant  server)  SQLite  instance  is  used  to  provide  the
database.  However,  the  “Recorder”  integration  which  is
responsible  for  saving  these  events  to  the  database  can  be
configured  to  use  an  alternative  database,  local  or  remote.
Database server software compatibility hinges on whether it is
supported by SQLAlchemy, which is what Recorder uses under
the  hood.  The  usual  suspects  for  linux-hosted  databases,
PostgreSQL and Maria DB, are well supported [23].

Changes to states, such as an update event from our meshed
environmental  sensors,  are  saved  to  the  database’s  “states”
table. Each new state is assigned a state_id (the index of this
table) and is inserted into this table with the entity domain of
the  state,  the  entity_id  the  state  belongs  to  (in  the  format
<entity domain>.<friendly name>), the value of the new state,
a JSON string containing the attributes of the state  (e.g.  the
sensor entity attributes are the user-facing name of entity, units
of  measurement,  and  its  device_class),  the  event_id  of  the
event that triggered the change (e.g.  a state_changed event),
timestamps (last_changed, last_updated, and created), and the
state_id  of  the  previous  state.  For  the  purposes  of
environmental monitoring, the keys of interest are the created
time, the state value, the entity_id, and perhaps the attributes if
we  do  not  know  in  advance  which  entity  stores  which
measurement type. That said, it is important to note that state
change data is considered by Home-Assistant to be short-term
data  [24]. Home-Assistant retains short-term data for 10 days
(by default),  after which it  is purged on the next daily auto-
purge  event.  The  retention  time  of  short-term  data  can  be
extended and/or the auto-purge even can be disabled, if storage
allows.

Home-Assistant provides a means of long-term storage for
Sensor  Entities  that  implement  a  “state_class”  of  either
“measurement”  or  “total”.  Every  hour  the  minimum,
maximum, and mean of the state value for those entities over
the past hour is calculated and saved into the statistics table of
the database. There is also a “statistics_short_term” table which
uses the same index and keys as the “statistics” table, but is the
data is processed over 5 minute chunks instead of hourly. The
documentation  for  the  short  term  statistics  is  sparse,  but  it
appears that this is, like the name implies, short term data that
will  be  periodically  purged.  Both  the  statistics  and
statistics_short_term tables  use a  metadata_id  to  identify the
Sensor  Entity  that  the  statistics  were  generated  from.  The



metadata_id is the index of the “statistics_meta” table which
contains  the  statistic_id  (in  the  same  format  as  the  state’s
entity_id), and unit of measure. Between one of the statistics
tables and the statistics_meta table, all the keys identified as
being relevant in the state table are also available here, just in a
format that has a smaller data footprint.

C. Exfiltrating Home-Assistant Data

There are two main ways to exfiltrate data from a Home-
Assistant instance: automated methods using Integrations and
Addon, or by interfacing with a database.

If your use-case requires only infrequent data retrieval, such
as reviewing long-term statistic data or saving monitoring data
from  a  short-lived  (a  few  days  at  most)  experiment,  then
manually  exfiltrating  data  from  the  database  may  be  the
optimal solution. The SQLite Web Add-on is available with
one-click install  in the in-dashboard Home-Assistant  Add-on
store and provides an easy to use Web UI. Through this Web
UI you can browse through Home-Assistant’s database table
structure and contents. To exfiltrate the data, SQL Web offers
an SQL query editor that can be used to build a query, view the
output, and then save the output to JSON or CSV format. The
data used in this report was retrieved via this method.

If  the  use-case  demands  saving  all  datapoints  (or  the  5-
minute  statistic_short_term  values)  and  daily  manual
exfiltration  is  not  suitable,  then  state  changes  must  be
exfiltrated to another storage solution, preferably as they occur.
For a well supported built-in solution with a Web UI, Home-
Assisant Operating System offers  a Community Add-on that
installs  and  configures  InfluxDB  with  Chronograf  and
Kapacitor  for  administration and  data  exploration  interfaces.
[25]. Once configured, the InfluxDB integration transfers each
state change to the InfluxDB instance.  If a local  instance of
InfluxDB  is  not  desired,  the  InfluxDB  integration  can  be
configured  to  transfer  state  changes  to  a  remote  instance  of
InfluxDB [26]. Alternatively, the Home-Assistant’s core back-
end provides REST [27] and WebSocket [28] APIs that can be
polled by other services to receive state changes. This method
does have a higher overhead Bear in mind that even if Home-
Assistant is not used for data storage, it continues to provide
value as an aggregator of multi-domain data.

D. Alternatives to Home-Assistant

An alternative that was considered for this system was to
use the same library that  interfaces  with the Mesh Gateway
Node’s USB/Serial connection to either log directly to a CSV
file or offer the mesh events over a REST HTTP server (polled)
or  client  (push).  The  CSV  approach  is  fast  and  easy  to
implement, but effectively limits the gateway server to the role
of a datalogger. The REST endpoint or client method does have
merit and was considered as a back-up plan for this system if
Home-Assistant  was  found  to  not  be  suitable.  A  REST
endpoint can be polled by or push to Home-Assistant or other
popular monitoring and logging solutions such as Grafana with
Loki  or  InfluxDB.  However,  the  main  drawback  to  this
approach is initial setup. The raspberry pi needs to be setup and
hardened for use on a network of presumably modest security.
Then the Mesh Gateway Node interface application needs to be
configured to point to the correct USB device, with the correct

permissions. Finally, the monitoring/logging solution needs to
be configured to ingest data from the Mesh Gateway Server, or
vice-versa if the Mesh Gateway Server will be pushing data to
the monitoring/logging solution. This would be a reasonable
solution for a hobbyist or organization with staff that have the
ability and time for this setup. 

VII. THE COMPLETE SYSTEM

The  completed  system  looks  much  like  the  proposed
system. Sensor nodes measure temperature and humidity using
a  low-cost  I2C  sensor.  Bluetooth  Mesh  was  used  to
communicate amongst the sensor nodes which were physically
located in such a manner that the furthest node was unable to
reach  the gateway node directly,  requiring a  Relay  Node to
retransmit the Mesh Messages.  A gateway node was used to
transmit mesh event data to the gateway server in lieu of using
the gateway’s on-board Bluetooth module. The gateway node
communicates with the gateway server via a USB CDC ACM
Uart, which is recognized by the gateway server as an emulated
serial port. Using this connection, a Home-assistant integration
library  receives  mesh  events  from  the  gateway  node  via  a
simple  serial  protocol  and  translates  them into  state  change
events on a Sensor Entity (if the new values differ from the old
values). Home assistant logs every state change event and state
value for short-term retention. For long term retention Home-
Assistant stores the average, minimum, and maximum values
of the Sensor Entity over one hour periods.

A. Exfiltrated Data

Figure 5: Home-Assistant Statistics Data from
Sensor Nodes

The chart in Figure 3 is built from the Home-Assistant one
hour statistics values  gathered from the Mesh Sensor Nodes
over a roughly 24 hour period.

B. Provisioning the Mesh Network

By far the easiest method to provision the mesh network is
to use Nordic’s nRF Mesh application for Android and iPhone.
This application handles unprovisioned node discovery, OOB
authentication,  network  provisioning,  binding  of  application
keys, assignment of virtual addresses, setting up publishers and
subscribers,  and  interfacing   with  the  mesh  server  models
through  an  intuitive  GUI.  The  application  does  require  the
device to be within range of a Proxy Node in order for it to
function.



C. Home-Assistant Setup

Assuming  the  custom  integration  developed  to  translate
mesh events  received  from the  Gateway  Node’s  USB serial
data was accepted as an official Integration, getting mesh data
into Home-Assistant  would require little  more than inserting
the Mesh Gateway Node’s USB port into a network accessible
computer running Home-Assistant, adding the integration, and
provisioning  the  mesh  network.  If  the  Integration  was  not
accepted, then installing it as a custom integration is as simple
as creating the “custom_components” directory in the Home-
Assistant  configuration  directory,  cloning  the  custom
integration  repository  into  it,  and  restarting  Home-Assistant.
Further  easing  deployment,  a  Raspberry  Pi  with  Home-
Assistant Operating system can be prepared in advance (with
any  custom  integrations  pre-installed).  All  that  would  be
needed  for  on-site  install  would  be  to  plug  in  power  and
network connections and have the user follow the prompts on
the  website  to  set  up  a  supervisor  account.  The  only  other
configuration  would  be  to  provision  the  mesh  network
(assuming  the  gateway  and  sensor  nodes  were  not  pre-
provisioned before issuing) and click a few buttons to start the
Bluetooth Mesh Sensor Integration and to confirm that the pre-
selected USB device is correct.

VIII. LESSONS LEARNED

A. Difficulties

A  personal  difficulty  was  that,  before  launching  this
project,  I  had no experience with any part  of the completed
system,  except  for  designing  the  Gateway  Node’s  serial
protocol  and  writing  the  serial  library  to  parse  it  into  data
objects on the Gateway Server. The common theme was that
despite  each  layer  of  the  system  having  some  of  the  best
developer-facing documentation I have worked with, there was
always  a  large  gap  between  the  nearly-trivial  examples  and
what  was  needed  to  build  my  somewhat  more  complex
components.

B. Failures

The original  intent  was to use the Raspberry  Pi  4  based
Gateway Server’s on-board Bluetooth module to communicate
with the bluetooth mesh via  a  Proxy Node.  Home-Assistant
Operating System does not provide or document a means to
install the necessary kernel modules or the supporting BlueZ
(the Linux project’s  out-of-kernel  Bluetooth stack) daemons.
At this point Home-Assistant OS was swapped for the standard
Raspbian distribution, which is preconfigured with the correct
kernel  modules  and  now has  the  mesh-enabled  BlueZ  tools
available in the package manager’s repositories. Initial success
was had by provisioning the device nodes through the BlueZ
mesh-cfgclient. However, minimalist documentation, the need
to communicate through DBUS, which I had never as much as
looked at, and a promising, but still a work-in-progress python
library combined to grind forward progress to a halt after well
over 40 hours invested. A third Particle Xenon was acquired
and the Gateway Node was completed in much less time.

IX. OPPORTUNITIES FOR FUTURE EFFORTS

Investigate  power  usage  and  capabilities  of  Low  Power
Nodes, especially for battery operation.

Add more Client Models to Home-Assistant Integration and
Gateway Node to widen capability of Bluetooth Mesh control
and monitoring. Implement Server Models to Integration and
Node  to  give  mesh  node  clients  access  to  external-to-mesh
devices.

Implement  and  Document  a  Bluetooth  Mesh  Integration
that  uses  the  Raspberry  Pi  onboard  Bluetooth  Module  via
BlueZ  to  communicate  with  mesh  Proxy  Node.  Enable
provisioning from Home-Assistant Web UI. 

Investigate  Existing Integrations  to  ingest  data  for  other,
non-mesh, Microcontroller  platforms.  There is  an integration
for automated discovery of and collecting data via Wi-Fi from
ESP32 and ESP8266 SoCs running the ESPHome firmware.
There is an integration for the Arduino Platform as well.
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