
Multi-Node Environmental Monitoring

W. Clayton Pannell
Dept. of Electrical and Computer Engineering

The University of Alabama in Huntsville
Huntsville, AL, USA
wcp0001@uah.edu

Abstract—This paper documents the creation of a
performant, reliable Bluetooth Mesh network for the purpose of
multi-node environmental monitoring of a large area. The mesh
network is then coupled, via a Gateway Node, to a Gateway
Server that aggregates and stores the sensor data in addition to
making it available to other devices on a Wide Area Network.
While environmental monitoring is useful this data can be seen as
a stand-in for a wide variety of sensors and devices.

Keywords—Bluetooth Mesh, IoT, Mesh Networking

I. INTRODUCTION

Wireless Mesh technologies allow for the creation of
networks that cover a large area where wired networking may
be impractical, expensive, or unappealing. Often, these devices
solely communicate amongst themselves, with little-to-no
provision for logging of the generated data. The systems that
can communicate with other devices often travel through the
cloud to do so, bringing along data privacy and security
concerns.

The system proposed uses the relatively new Bluetooth
Mesh Profile to connect a series of Environmental Sensors,
strewn across a large area with a mesh-to-http gateway. This
gateway will be responsible for aggregating and logging the
Temperature and Humidity data produced by these Sensor
Nodes, providing a user-friendly Monitoring Interface, and
enabling orchestration with other devices that may be present
on other mesh networks or the local TCP/IP network (intranet).

The Sensor Nodes are based on the Particle Xenon
development board, which was selected because it uses a

ubiquitous-in-IoT Nordic NRF52 series System On Chip
(SoC), has good support with Zephyr Real Time Operating
System due it’s feather form-factor, is equipped with a
common JTAG style Single Wire Debug (SWD) port, has an
onboard lithium ion battery charger with connector, and it was
on-hand in the needed quantity. The Nordic nRF Connect SDK
with Zephyr Operating System is used to provide the Bluetooth
mesh support and hardware abstraction. The DHT20 I2C
Temperature and Humidity sensor is used to gather the
Environmental data. For the purpose of simplicity, all sensor
nodes will Bluetooth Mesh Relay nodes and be mains powered
via a 5v USB adapter.

The Gateway-to-Mesh interface node uses the same Particle
Xenon development board and NCS/Zephyr operating system
as the sensor nodes. The gateway node provides mesh event
data to the gateway server over a USB emulated serial port,
which will also power the gateway node.

The Gateway server is a Raspberry Pi 4 running the Home-
Assistant Operating System. A Home-Assistant integration
translates the serial data from the gateway node to update
Home-Assistant Sensor Entities. Home-assistant stores the state
values for each sensor entity at each change, displays the
current state and recent history for user monitoring and
provides a means to retrieve stored data for later processing.
Home-assistant is privacy-aware and requires no access to the
internet for its functionality and, if it were given access, only
checks for automated updates, unless intentionally configured
otherwise.

II. MARKET SURVEY

A. MESH Project Temperature and Humidity Sensor [1]

A $60 Bluetooth Mesh connected environmental
temperature monitoring solution. This device is essentially an
existing commercial solution to the sensor nodes proposed in
this paper. The sensors can be bought individually or as a
bundle with other nodes (e.g. Button, LED, GPIO, etc). While
MESH provides an app that implements a visual orchestration
programming language (i.e. pressing the Button node will turn
on the LED node), they do not sell a commercially packaged
persistent mesh to IP gateway solution. In order to connect to
an orchestration / logging server this solution relies on either a
phone or tablet dedicated to running their app or a Raspberry
Pi3/4 running their packaged Linux distribution. In either case,
remote orchestration and logging is provided by IFTTT (If this
then that), a commercial cloud service.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Figure 1: The Proposed Environmental Monitoring
System

mailto:wcp0001@uah.edu

B. Blue PUCK T [2]

A $47 small temperature sensor node that transmits data via
Bluetooth 4.0 Low Energy (in beacon mode) and can be
configured via RFID. There is a version that is compliant with
EN12830 [3] temperature logging standards for temperature
sensitive goods. This version constantly logs the temperature
within the node and can transmit the logged data to authorized
users. The company that makes the Blue PUCK T makes some
Bluetooth Mesh devices and has some documentation
referencing a Blue PUCK T MESH device, but it is not yet on
the market.

C. Sonoff Zigbee Sensor and Bridge [4]

The $18 Sonoff Zigbee Temperature and Humidity sensor
is similar the the MESH Temperature and Humidity sensor, but
with a little less polish. The device communicates over Zigbee
mesh networks. The optional $36 Sonoff Zigbee Bridge [5]
acts as a persistent gateway connecting the Zigbee mesh to the
user’s choice of the eWeLink cloud orchestration service, or to
a local orchestration service like Home Assistant.

III. LITERATURE SURVEY

A literature survey was conducted in order to determine the
state of the art, investigate alternative methods, and identify
areas that may benefit from further research. The results of the
literature survey are listed below. Each paper is presented with
a brief summary, a description of the problem the paper
attempts to solve, a summary of the paper’s contributions, and
an explanation of the relevance of the paper to the topic at
hand.

A. An Approach of BLE Mesh Network For Smart Home
Application [6]

Tran et al. presents a case study for a door lock that
communicates with a home security system over Bluetooth
Mesh in order to allow remote control and monitoring of the
door lock through a cloud-hosted website.

1) Problem
Devices that communicate via Bluetooth and/or Bluetooth

Low Energy are practically ubiquitous and are implemented by
not only a wide plurality of very low cost microcontroller
system on chips (SoC), but also by many devices the average
person already owns. With the introduction of the Bluetooth
Mesh protocol, a large-scale device network can operate on top
of the low-power BLE protocol.

2) Contributions
A Bluetooth Mesh system is designed, built, and tested in a

real-world environment. The system consists of the lock node,
a remote unlock controller node, two relay nodes, and a
provisioner node that also interfaces the mesh network to a
cloud server, allowing for remote control and monitoring over
the internet.

Four experimental scenarios were developed and tested:
open area, one room, two rooms, and two floors. In the open
area scenario, two nodes transmitted between each other at a
distance of just under 30m without packet loss. The one room
scenario takes place in a 30sq meter office environment with
metal obstructions and radio interference (e.g. WiFi, Cellular,

other Bluetooth devices). 5 Nodes were used for this test with
the nodes placed at varying distances and heights. It was found
that approximately 5-7m distance at 1.8m height difference
between the nodes results in little-to-no drops. The two room
experiment uses one node as the relay to communicate between
the devices in each room. The relay node is located such that it
is line-of-sight with both nodes and is 6.5 meters to the
originating node and 7 meters to the end node. The relay to end
node link dropped 18-20% of transmitted packets, whereas the
slightly shorter start to relay link dropped no packets. The
multi-floor tests took two forms, one where the gateway and
relay were on the same floor, with the end node 1 floor higher
(in a stairwell) and one where all three nodes were on different
floors of the same stairwell. The two floor test saw a 2.1 and
5.9% packet drop rate with 6.5m and 3.5m between the start
node and relay and the relay and end node The multi-floor test
saw similar drop rates, except that the 2nd to 3rd floor nodes
experienced a 17.3 % drop rate at only 3.5 meters between the
nodes.

Tran et al. also studied the power consumption of their
devices and attempted to perform optimizations based on that
data. They found that switching the node into low energy mode
netted a 35% reduction in power. They were unable to gain any
further significant power savings by other means, including a
wake/sleep power-saving algorithm. The power-saving
algorithm maximized time in the lowest consuming sleep mode
and woke the device to send and receive via Bluetooth. The
authors blame component selection on the development boards
used for consuming too much power regardless of radio state.

3) Relevance
The paper presents an application much like the intended

application. While the some of the details differ, such as the
use of cloud-based orchestration, the system architecture is
very similar. The physical domain is also similar. The paper
covers the issues with WiFi and physical object interference
that would be present in the intended application.

B. Bluetooth Mesh Analysis, Issues, and Challenges [7]

This paper provides a detailed summary of Bluetooth Mesh
features and problems concerning node types, responsibilities,
overhead, and configuration parameters.

1) Problem
BLE is nearly ubiquitous. BLE is great for tracking the

locations of nodes. Bluetooth mesh is built on top of BLE using
it’s advertising and scanning states and uses flooding as
opposed to a routing protocol. Relay nodes and re-
transmissions should be limited and finely tuned to control
congestion. The paper focuses on describing and adjusting
Bluetooth Mesh parameters and how they interact between the
layers of the protocol, based on real-world testing, to achieve
reliability, efficiency, low latency, and low packet losses.

2) Contributions
A significant contribution is a detailed summary of the

Bluetooth Mesh protocol, network topology, and key features.
Unlike [8], Á. Hernández-Solana et al. differentiates “low
power” nodes (LPN), friend nodes, and relay nodes. The low
power node example given is a temperature sensor which rarely
needs to receive data from the network, much like the intended

application. This is enabled by the friend node which is
essentially a relay that stores messages for the LPN until it
comes back online to request the messages. A proxy node
relays messages to devices outside of the Mesh (e.g. a server).
A provisioner node configures a device to join the mesh after
the device sends beacon advertisements announcing itself. All
nodes must pass encrypted and authenticated messages with
separate keys for network, application, and device security. The
Advertising Event can transmit up to 47 bytes, but after the
protocol overhead through the various layers, only 10 of these
bytes are available to the user.

Another contribution is the enumeration of discrepancies
between the Bluetooth Mesh specification and the realities of
real-world devices and use-cases. The Bluetooth Mesh
specification expects the devices to be scanning or advertising
with as close to 100% up-time as possible, but due to channel
hopping, packet processing, stack processing, and sending
connectable advertising packets there are “blind times” that
reduce this up-time. Buffering can cause latency and
undersized buffers can cause dropped packets or cache flushing
(causing unnecessary re-transmission of packets). Repetition of
packets provide more reliability at the cost of higher latency ,
more network congestion, and lower throughput. Inappropriate
random delays can result in timing issues that actually increase
the frequency of collisions and latency when performing re-
transmissions. The random delays for acknowledgment
messages may incur a similar fate if not carefully bounded.
Likewise, choosing an appropriate time to live value requires
some adjustment to prevent data storms and undelivered
messages. The high up-time requirements for relaying devices
also incurs a power consumption cost. Over-provisioning
relays can significantly increase the energy consumption of the
network as a whole (due to high radio up-time) while
decreasing network reliability due to higher congestion and
more frequent re-transmissions.

The paper also identifies areas where further research is
needed to improve Bluetooth Mesh Performance and/or power
usage. Self-tuning of network parameters (e.g. TTL, re-
transmissions, delays) would make mesh networks easier to
set-up, reduce fragility to changes (as simple as moving a
node), and improve performance of poorly optimized nodes.
Combining of copies of the same message received can reduce
needless re-transmission. More and/or different bearers can
allow for greater byte efficiency and larger payloads (via
extended advertising PDUs) or packet chains. The current
requirement for high up-time on relay nodes makes it
unreasonable to use battery powered relays. The 5ma power
consumption figure cited in the paper sounds quite small, but it
would drain a 10,000mAh battery pack in under 3 months.

3) Relevance
Á. Hernández-Solana et al. Provides a clear summary of the

Bluetooth Mesh protocol, warts included. Attention is drawn to
some of the configuration pitfalls that lie in wait due-in-part to
the wide adjustment range available on some of these
parameters. Importantly, some “reality-checks” are dished out
that could prevent developers intending to use the protocol
from being caught unaware. Particularly shocking is that only
11 bytes of application data can be sent per packet, but that

doesn’t particularly detract from the intended application as
sending environmental data. Another pain point is the high
power consumption caused by the apparent need for high on-
time for relay nodes, which would make battery-powered
applications difficult.

C. Features of Building MESH Networks Based on Bluetooth
Low Energy 5.1 Technology [9]

This paper considers the Bluetooth standard specification
version 5.1, evaluating its features, and (dis)advantages
compared to 802.15.4 protocols (Zigbee and Thread).

1) Problem
Evaluate performance in a multi-story building made of

reinforced concrete. Explore possibilities of building BLE
mesh networks using modern microcontrollers. Discuss the
new locating features released in Bluetooth 5.1.

2) Contributions
Zyulin et al. describes the method by which the Bluetooth

5.1 specification determines the location of the nodes, down to
an accuracy of several centimeters. Multiple antennas are
required at one node and either Angle of Arrival (multiple
antennas at transmitter) or Angle of Departure (multiple
antennas at receiver) can be used. The data received from the
antenna array is used to determine direction which is combined
with the range in order to solve for position.

Bluetooth mesh is compared to the Zigbee, which offers
better data transfer security at low speed and range, and Thread
protocols, which offers high speeds at short ranges. The paper
cites data collected by Silicon Labs [10] which directly
compared the three protocols. In this test it was found that,
although the data transfer rate of Bluetooth mesh is low, it is
almost completely unaffected by the number of hops (relay
node receives and re-transmits), unlike Thread and Zigbee,
which both decrease exponentially with each additional hop.
Data transmission distance is similar between the mesh
protocols with roughly a 10% increase from Zigbee to thread
and thread to BLE. There is a BLE long range protocol which
transmits 2-3 times further than the mesh protocols, but it is not
currently implemented in the Bluetooth Mesh protocol.

After this comparison, the authors focus on the performance
of the Bluetooth Mesh network. A sample application was
created that continuously transmitted the Morse code for S-O-S
from the start node, over the mesh, which is received by the
end node and displayed on a LED. This application is used to
benchmark the signal quality in various connection scenarios
throughout the multi-story building. A summary of the error
thresholds follows: no errors were found when transmitting
down a 40m hallway, errors were found when transmitting
across 5 floors (one relay hop per floor), Connection dropped
out entirely across 3 floors (no errors on 2 floors), errors were
found when transmitting across 5 flights of stairs (in a
stairwell), and errors were found when transmitting through 3
classroom walls. The floors were 150-180mm reinforced
concrete and the walls were 100mm thick.

3) Relevance
Of the papers considered, this covers the nearest to current

release version of the Bluetooth Specification (v5.2) and

provides a good comparison between the three most common
mesh protocols (Bluetooth Mesh and 802.15.4-based Zigbee
and Thread). The performance of the Bluetooth Mesh network
appears to have much longer range than shown in [6], but this
could be attributed to the different Bluetooth interfaces used.
The difference may also be due to the method of determining
connection quality, where Zyulin et al. used a qualitative
approach, that, depending on application design (not discussed
in the paper), could be much more tolerant to packet loss than
the packet counting method used in Tran et al.

D. IEEE 802.15.4 Thread Mesh Network – Data Transmission
in Harsh Environment [11]

This paper presents a similar premise to Tran et al. [6], but
implements the OpenThread 802.15.4 protocol stack on the
NRF52840 SoC instead of Bluetooth Mesh. A mesh connected
temperature sensor and raspberry pi based gateway are given as
an example application.

1) Problem
IPv6 is implemented on top of OpenThread with the

6LoWPAN protocol, enabling internet protocol (IP) v6 to be
transmitted over the mesh network via a 6LoWPAN border
router. Going further, the Constrained Application (COAP)
protocol is used to provide more reliable communication.

The paper also provides a concise description of the Thread
network protocol and topology. An example hardware and
software solution is developed, tested, and analyzed.

2) Contributions
The Thread network topology is very similar to the

Bluetooth Mesh network. Packets being transmitted to/from
End Devices (which can operate in a low power mode if
connected to only one router) are received and re-transmitted
by router nodes (equivalent to Bluetooth Mesh relay nodes).
Packets are encrypted in transit. With the implementation of
6LoWPAN Thread nodes can communicate directly via IPv6
with external servers on an IP network.

The example solution is an indoor temperature
environmental condition monitor that transmits a 128kB packet
every minute to a server. The server logs the data and provides
a dashboard display of the data, served over HTTP via LAN.
The sensor packets are time-stamped so that they can be sent
inconsistently (non-real-time). The Border Router server acts as
the gateway connecting the Thread mesh network to the IP
network and runs the OpenWRT Linux distribution for the
operating system. The Thread network interface is a
NRF52840 development board running the OpenThread
protocol implementation which is connected to the border
router via USB. The border router runs a COAP server to
provide reliable UDP protocol messaging on top of the mesh
IPv6 protocol. COAP adds reliability by requiring message
acknowledgment and providing timeouts and re-transmission
when a packet is determined to be lost. The sensor devices use
the same NRF52840 SoC as the Border Router on a custom
PCB with integrated environmental sensors, PCB antenna, and
coin cell battery holder. The device can determine whether it is
powered from battery or the USB connector. When powered
via USB the device configures itself as a Router Device. When
powered via battery the device configures itself as a low power

Sleepy End Device. The end devices implement a state
machine with RTC timer and radio transceiver event interrupts
in order to maximize battery life by maximizing sleep time.
Once a minute the device wakes up, takes a sensor
measurement, packages the measurement data as json data in a
COAP packet, and sends it to the logging server over the mesh
network. The COAP implementation handles ACK receipt and
re-transmission as required.

Testing of the solution was performed in a 5 story research
laboratory with brick walls, concrete ceilings/floors, and a large
amount equipment producing both RF signals and noise. In
order to provide reliable, redundant radio links (at least 3 links
per device), four to five Thread router nodes are deployed on
each floor, preferring open areas and hallways for best results.
The sensor nodes are deployed in random places throughout the
building. Testing was done with and without the COAP
protocol enabled. When COAP was not used, messages were
transported using simple UDP packets (no acknowledgment
and re-transmission). In this configuration, packet loss rate was
approximately 12% without COAP, and effectively 0% with
COAP. Naturally, the 12% loss remains, but re-transmissions
ensure that data eventually reaches the desired location. Brief
network outages were noticed while the mesh was rearranging,
but once the mesh was re-established the affected packets were
successfully re-transmitted.

3) Relevance
Much like the intended application of this paper, the

example application used in Rzepecki et al. is a mesh
connected temperature sensor and a Raspberry Pi acting as a
gateway connecting the mesh to an IP network. The network
topology used is by Thread is very similar to Bluetooth mesh.
Also, the IETF is working on a draft standard similar to
6LoWPAN to apply the IPv6 protocol on top of Bluetooth
Mesh.

E. Comparison of the Device Lifetime in Wireless Networks
for the Internet of Things [12]

This paper compares the lifetime (energy consumption) of
several prominent wireless networking technologies used in
IoT. The lifetime was based on the the platform being powered
by a pair of AAA batteries (13.5kJ) All technologies use the
6LowPAN protocol (or the closest approximation available) to
keep protocol overhead as similar as possible amongst the
technologies. The energy consumption figures account for re-
transmission and inactive consumption, thus potentially
allowing for an energy intensive technology to still be
competitive if it has the bandwidth to transmit more data less
frequently.

1) Problem
Many IoT devices, like the intended application rely on

battery power, and therefor rely on very low power wireless
networking technologies to maximize battery life. 802.15.4
networking has long been considered a standard for very low
powered devices, but new technologies challenge that status
quo. This paper compares estimated battery lifetimes among
802.15.4, 802.11b Power Saving Mode, BLE, 802.11ah, LoRa,
and SIGFOX.

2) Contributions

The analysis found that BLE platforms had a much higher
lifetime than other technologies when transmission was more
frequent (1 second Application Period). As transmissions
become less and less frequent, sleep-mode power consumption
becomes more important than TX/RX power consumption.
When a 100 second Application Period was used, the
performance was more similar among BLE, 802.15.44, and
some 802.11 platforms. In those cases, most BLE
implementations outperformed 802.15.4, and most 802.11
implementations outperformed the worst 802.15.4 (TelosB).
SIGFOX and LoRa (EU variant) had the worst lifetime, by far
and are only competitive when transmitting less than 500 bytes
once per day. In all scenarios tested, BLE offered the highest
lifetime. The higher bitrate of BLE is what allows it to
outperform 802.15.4. This was validated by testing the various
bit-rates available to BLE and 802.15.4. It was found that
250kbps 802.15.4 has an equivalent lifetime to BLE at 500kbps
at low packet sizes and BLE at 125kbps at higher packet sizes.
When 802.15.4 was tweaked to 2Mbps the same was seen
when compared to BLE 2Mbps and 1Mbps.

The take-away of this paper is that in order to maximize the
lifetime of an IoT device, the device should transmit as little
data, as infrequently, and as fast as possible in order to
maximize sleep time. Additionally, the next most important
finding was that BLE was the best technology tested, in terms
of energy consumption, when sending small data packets at
medium and high data rates. Neither of these points change
when 20% packet losses (and subsequently, re-transmissions)
are introduced. In other words, the lifetime does go down, as
expected, but the ranking of the technologies does not change.

3) Relevance
Given that the intended application is to transmit

temperature data across a multi-hop network, this paper
confirms that BLE and 802.15.4 would be the most appropriate
technologies to investigate. Ambient air temperature and
humidity can only change so fast. Transmitting data more often
than once a minute is unlikely. Likewise, the payload
transmitted from the sensor nodes is expected to be only a few
bytes. This should result in a multi-year lifetime.

Morin et al also provides a concise summary of the wireless
technologies investigated, focusing on their use in a low
energy, battery operated node that transmits infrequently.
Beacon-enabled 802.15.4 enables low power multi-hop meshed
networking. The coordinator / relay nodes send a beacon
requesting connector nodes to send data. This method handles
the synchronization issue brought up in [11] at a much lower
energy cost than constant radio operation. Also, Bluetooth Low
Energy specification, as of version 5.0, does not support a true
mesh, but instead a scatternet, which is similar, but more like a
collection of trees than an interwoven mesh. This is a
distinction that I had not seen made, yet and may make mesh
configuration more challenging. This may push 802.15.4 as a
preferred solution over the somewhat-longer-lived BLE option.

F. Understanding the Performance of Bluetooth Mesh:
Reliability, Delay, and Scalability Analysis [8]

This paper evaluates the performance and scalability of the
Bluetooth mesh protocol. The system is evaluated through

extensive simulations, including a model of a real-world office
environment with WiFi interference mapped from collected
data. The bulk of this paper is concerned with the tuning of
protocol parameters for minimal packet loss and corruption,
latency, and network congestion.

1) Problem
Previous Bluetooth specifications did not support a mesh

topology for BLE, opting instead for a star topology, or, at best,
a scatternet as discussed in [12]. A variety of proprietary and
research mesh schemes have been attempted to rectify this, but
all lacked standardization and interoperability required to bring
wide adoption. This has been corrected with the 2017 release of
the Bluetooth Mesh specifications. Although it is based on the
(much older) BLE protocol stack, the mesh network is different
enough that it needs it’s own performance studies. Because the
protocol is so new, there are very few studies that analyze BLE
mesh network performance with respect to latency, quality of
service, tuning, and scalability.

2) Contributions
A significantly useful contribute of the paper was a concise

summary of the transmission/receive model of Bluetooth Mesh.
Bluetooth Mesh is designed without the need to establish
connections among devices in the network by transmitting via
the advertising (ADV) / scanning scheme of BLE. The
transmitting (ADV) devices send the data packet on each of the
3 channels with a time interval between each transmission
denoted as TinterPDU. During the ADV The transmission
model is known as managed flooding, where all nodes receive
all messages from other nodes in direct radio range. Relay
nodes will rebroadcast the message to reach more distant
nodes. Time to live (TTL) is implemented to prevent packet
storms. This allows messages to reach their destination through
multiple network paths, at the cost of increasing collision
probability.

Randomization of the advertising event timing (TinterPDU)
and idle timing (back-off) can help prevent, or at least recover
from, network collisions and prevent continuous masking.
Masking is where two nodes’ advertising and scanning times
never overlap, or do overlap but never on the same channel. In
simulation, this randomization was not found to negatively
affect the network. However, re-transmitting PDUs can
increase packet latency and network congestion. A single
repetition was found to be a good trade-off with a 25%
improvement in packet loss rate at the cost of a 30ms delay,
end to end.

Decreasing advertising event duration (via shorter
TinterPDU values) was found to be beneficial with respect to
latency and network congestion, but is more susceptible to
radio noise. The shorter event makes it more likely that all
three PDUs overlap the noise event. Likewise, a longer scan
interval is more likely to receive a matching PDU or a noise
event. Short TinterPDUs (1-2ms) matched with minimal
ScanIntervals (10ms) achieves a 100% end-to-end packet
success rate when noise events are not modeled.

In order to understand the behavior of the effects of WiFi
on Bluetooth Mesh, a mesh topology was designed to fit within
a real office space and tested against WiFi interference map

data collected from that office space. Naturally, during times of
greatest WiFi traffic Bluetooth Mesh end-to-end packet loss
was highest and lowest during times of lowest WiFi Traffic.
There was also a clear effect on the node-to-node packed
success rate due to the presence of WiFi Traffic, with
significant reductions for the nodes with the the most
interference. There are newer, secondary ADV channels that
became part of the Bluetooth 5.0 core specification, but it was
not available in time for publication. The additional channels
would decrease channel interference by allowing the network
designer to move the channels “further away” from the WiFi
channels.

3) Relevance
Based on the findings of [6], [12] 802.15.4 and traditional

BLE have comparable range in an obstructed, noisy
environment while BLE has a power advantage due to the
ability. The parameter tuning discussed in this paper, when
combined with the “minimal on-time” approach should
improve the performance and power consumption of the much
more active relay nodes used in a mesh topology. This gives
some credence to the feasibility of battery powered relay nodes.

IV. BLUETOOTH MESH

Bluetooth MESH is a subset of the the Bluetooth standard,
first introduced in version X.X. The mesh network messages
are built on top of Bluetooth Low Energy (BLE) Advertising
bearer (ADV). However, due to the overhead of the mesh
network only a maximum of 11 8-bit bytes (out of the
maximum of 265 bytes in a link layer packet) can be
transmitted in a single, unsegmented payload.

A. Bluetooth Mesh Node Roles

1) Relay Node
Relay nodes can be thought of as the main trunk and

branches of the mesh network. These devices consume a
relatively high amount of power because the radio is
continuously receiving and transmitting (the NRF52840
specifies roughly 6mA of power during transmit and receive
[13]). Each message that the Relay node receives, that is not
stored in its recent message cache and has a Time-to-Live
(TTL) value greater than 1, is retransmitted to be received by
all other nodes within range. See Mesh Sensor Node 1 in
Figure 2 for an example of this retransmission.

2) Friend Node
A Friend Node stores messages Addressed to one of its

registered Low Power Nodes. Once the Low Power Node
comes back online, the Friend Node will forward those
messages to the low power node. A Friend node is usually also
a Relay node since the friend node needs to leave its radio
powered on to receive mesh messages in addition to the
periodic friendship messages from its low power nodes.

3) Low Power Node
A lower power node (LPN) keeps its radio off for the

majority of the time to save power. The low power node
periodically transmits to and receives from its friend node. In
order to facilitate this, whenever the low power node does
transmit, it makes an appointment to receive from the Friend
node. This appointment consists of a delay and a window. In

simpler terms, the LPN tells it’s friend that in (for example)
100 milliseconds it will listen for 20 milliseconds and then go
back to sleep. After at least 100 milliseconds the Friend node
will transmit every message it has queued up for the LPN to the
LPN. This friendship allows battery operated devices to join
the mesh network without expending their power budget on
constant scanning and retransmissions required by Relay
nodes. Because of this, Low Power Nodes are leaf nodes in the
Bluetooth Mesh tree. They are only able to talk to the node it is
friends with. An LPN is only allowed to have one friend. It
must cancel its old friendship before it can start a new
friendship.

4) Proxy Node
Proxy Nodes transmit and receive mesh messages to/from

devices that do not support the Advertising bearer, but do
support the BLE point-to-point GATT bearer. The Proxy node
takes the role of the GATT Client. The Gatt server provides the
Mesh Proxy Data In (UUID 0x2ADD) and Mesh Proxy Data
Out (UUID 0x2ADE) characteristics in addition to the Client
Characteristic Configuration descriptor (UUID 0x2902) [14].
The Proxy node (GATT Client) then enables notifications for
the Mesh Proxy Data Out characteristic. Messages from the
Mesh network are then written (without response) to the Mesh
Proxy Data In characteristic whereas messages from the BLE
device are read from the Mesh Proxy Data Out Characteristic
by the Proxy node as demanded by the notification. It is worth

Figure 2: Mesh Node Data Model

re-emphasizing that this proxy feature transports mesh
messages. The BLE-GATT-only device will still need to be
able to consume and produce mesh messages in order to
communicate.

B. Bluetooth Mesh Data Model

The Bluetooth mesh data model follows an object-oriented
design pattern [15]. A Node has a set of Elements, each
Element has a set of Server and/or Client models, and each
Client or Server model has a set of states and properties.

Bluetooth Mesh Properties are instances of characteristics
which are identified by Unversally Unique Identifiers (UUID)
[15]. These characteristic definitions are shared with the BLE-
GATT profile for which the Bluetooth Special Interest Group
(SIG) specifies their data structure representations [16]. The
UUID of each Mesh Property [17] is specified by The Mesh
Working Group, which is also part of the SIG, but the property
definitions are not shared with any other part of the larger
Bluetooth Specification. There are currently 182 usable
properties defined (0x00 is defined as prohibited) to cover a
wide variety of data types and use cases.

Bluetooth Mesh Models can be defined by either the SIG or
a by a registered vendor. SIG models are identified by a 16bit
UUID whereas vendor models are defined by a 32bit UUID
consisting of a 16bit company identifier and a 16 bit vendor
specific model identifier [18]. Only the SIG models are
considered for the purposes of this paper because the Vendor
model specifications are vendor specific and are not intended to
be used by other parties (unless published by the vendor or
reverse engineered). There are two types of SIG models
Foundation models and SIG adopted models. There are only 4
SIG Foundation models: Configuration Server and Client, and
Health Server and Client. The Configuration server/client pair
are used to store and change (respectively) mesh
communication settings for each node, such as whether the
node is configured as Relay node, how many retransmits the
node sends for each message, the keys for the network and
applications, heartbeat, and so on. The Health server/client pair
deal with faults, the health period, and the attention state
(which causes the device to do something to identify itself in
the physical domain, like blink LEDs or beep). Each node on
the Bluetooth Mesh network must have a Configuration Server
and a Health Server. The SIG adopted models are defined in
[19], which specifies 52 server and client models. These
models are classified into 4 model groups: Generic (on/off,
power status, battery status, etc), Sensors, Time and Scenes
(time, scheduling, preset states, etc) , and Lighting (lightness,
hue, saturation, etc).

A mesh node has at least one element and the number and
composition of the elements in a node is static. If the elements
need to change (e.g. for a firmware update), the node must be
reprovisioned [18]. The elements may only contain one
instance of a model. A rectangular box fan with 2 independent
fan motors would have 2 elements, each containing a Generic
On/Off Server Model that controls a fan. One of the elements
would be the primary element, which would contain the
Foundation models. Each element is given an identifying
unicast address when provisioned, starting from the primary
element if more than one element is present. This element

address is how mesh messages address their intended target.
There are also virtual address groups which can target multiple
elements. Keeping the dual fan example, a virtual address
could be used to turn both motors on with only one message.

C. Bluetooth Mesh Dataflow

Figure 3: Data Flow of Sensor Node Publication
Event in Meshed Environmental Monitoring System

Unlike other meshed networks Bluetooth Mesh network
eschews routing protocols in favor of a lighter weight, but less
deterministic “flooding” dataflow. Each relay node transmits
not only its own mesh messages, but also any mesh message it
has received that was not already in its recent network
messages cache. See Figure 2 for an example of how a packet
flows across the mesh network.

D. Provisioning

For the node-side of provisioning, the NCS provides a
reference implementation of a Zephyr provisioning process
handler, intended for use on Nordic development kits. The
Provisioning handler implements four of Out of Bounds
authentication methods. The Display Number and Display
String are not likely to be suitable for a user-facing device
because they print a secret number or string, respectively, to
the Application Console serial port, which is typically used for
diagnostics during development of the Zephyr application. The
blink output and push-button input OOB provisioning methods
are much more reasonable to for a user to interact with. The
blink output method blinks an on-board LED 1-10 times where
the number of blinks is the OOB code that is entered into the
provisioning application. The push-button input method
requires the provisioner to push a button on the node being
provisioned a number of times (1-10) equal to the OOB code
generated by the provisioner. Both methods were used
successfully on the Particle Xenon development kit, so there is
hope that other nRF52-based boards that implement the feather
footprint may also use the NCS reference provisioning handler
without significant modification.

A series of security vulnerabilities were disclosed in the
Out-of-band (OOB) secret provisioning process on May 24,

2021 [20]. The only provisioning method that is unaffected by
these vulnerabilities is the use of an OOB value with OOB
transfer of public keys [21]. This involves storing a randomly
generated OOB value and public key pair in the unprovisioned
node’s non-volatile memory before release to a customer (like
a UUID or randomized serial number assigned while
programming each node’s microcontroller). The unprovisioned
node will need to provide a means for the provisioner to learn
the provisionee’s public key and static OOB value, such as a
QR code printed on the device’s packaging. During
provisioning the the provisioner will use the provisionee’s
public key to start the key exchange at the beginning of the
provisioning process and provide the provisionee with the
encrypted OOB value. The provisionee will only accept the
provisioning attempt if the decrypted OOB value matches the
value stored in the provisionee’s non-volatile memory.
Unfortunately this vulnerability was not noticed in time to be
included in the system described in this paper. Future efforts
should follow the security recommendations of the Zephyr
Project.

V. NORDIC NRF CONNECT SDK & ZEPHYR OS

The Nordic nRF Connect SDK (NCS) is based on the
Zephyr Operating System. The Zephyr operating system is a
light weight OS targeting resource-constrained
microcontrollers. The Zephyr Kernel offers threading in
various flavors (including POSIX pthreads), interrupt service
routines, synchronization services, message/data passing
services, and power management services. On top of this,
Zephyr uses a Linux-kernel-like devicetree to describe
hardware, hardware abstracted drivers, and of course, what
pushes many to use an RTOS, a robust networking stack. The
NCS builds on top of this with additional driver support,
utilities, libraries, and examples. The NCS documentation
includes not only documentation for the SDK, but also the
documentation for the linked versions of Zephyr and other
Nordic Libraries in one convenient place [22].

A. Zephyr Bluetooth Stack

Zephyr’s Bluetooth stack consists of 3 layers: host,
controller, hardware interface. Within a mesh The NCS
provides an alternative controller layer, the SoftDevice
Controller, that interfaces with its own hardware interface
libraries. Although the NCS SoftDevice Controller features a
more complete implementation of the Bluetooth 5.2
specification, the NCS documentation recommends using the
open-source Zephyr Bluetooth LE Controller for mesh
applications. The Host layer is not used within the mesh
network. This recommendation was followed for the system
implemented in this paper.

B. Bluetooth Mesh Profile

The Zephyr OS Bluetooth Mesh Profile implementation
closely follows Bluetooth Mesh data model. For the Sensor
Nodes implemented in this paper the current value of the
temperature sensor is periodically sampled from the sensor by
the sensor driver. Once sampling is completed the new value is
then converted to the Temperature characteristic representation
and used to update the Precise Present Ambient Temperature
Property (UUID 0x0075). The Property is a member of the

Sensor Server Model (UUID 0x1100) and the Sensor Server
Model is a member of the primary (and only) element on the
Node. Likewise, the Humidity value is translated to the
Humidity Characteristic representation, which updates the
Present Ambient Relative Humidity Property (UUID 0x0076),
which is also a member of the Sensor Server Model. Because
these two properties represent the same physical sensor, or
from another point of view, are sensors that measure different
properties of the same physical object, they can be part of the
same Sensor Server Model under the single primary element. If
the Sensor Node’s sensors measured two locations, then it
would need two elements each containing a Sensor Server
Model (a server model for each sensor, one instance of a sensor
per element).

C. USB Device Stack

Zephyr OS has a hardware independent USB that supports
a variety of Communications Device Classes and Human
Interface Device classes (HID). The interface for the USB
CDC ACM implements the UART driver API. This allows
using the on-chip usb peripheral to act as a serial interface with
almost no configuration. The major constraints to using the
USB stack as a UART are that, prior to USB stack
initialization, any data written to the UART is lost, and the
USB device must be connected to a host that has opened the
USB CDC ACM “serial port”. Attempt to write to or read from
the USB uart in the zephyr application, in my testing, resulted
in instability and resets. The USB UART implements a virtual
DTR signal that is set once the connection is made. Poll this
line before attempting to write the first byte to UART.

D. Threading

Workqueues use a dedicated thread to pull jobs from a
FIFO queue, perform their work, and yield to any other threads
before grabbing a new job from the queue. The Work queue
sleeps when the queue is empty. The Sensor and Gateway
nodes developed for this paper rely on scheduling delayable

Figure 4: State Model of Gateway Node

work items being processed by the Workqueue thread for their
non-mesh-stack functionality. A Delayable work item is similar
to the standard Workqueue work item, but is held by the kernel
for a time specified when scheduling the work item. After that
time has expired the kernel then adds the delayable work item
to the workqueue. The Sensor nodes use the workqueue to
schedule the Temperature and Humidity measurements every
30 seconds. The Gateway node schedule a job every 100
milliseconds to check if there’s a message waiting to be put on
the USB UART from the mesh event message queue.

E. Hardware Abstraction

Zephyr uses a devicetree and the Linux kconfig
configuration system to configure the drivers, pin definitions,
and hardware peripheral at compile time allowing for greater
abstraction. For example, an application using an I2C
peripheral is defined to use pin X and Y on one microcontroller
board. To port that application to a different microcontroller on
a different board, the device tree is modified to set the I2C
device to the new locations and be driven by a different I2C
hardware abstraction driver. If the new board has multiple I2C
ports, then the unused ports can be disabled in the kconfig. It is
worth pointing out that device tree can only configure
supported boards. If a custom board is developed, that board
needs to be ported in to zephyr. These board support files can
be part of the application repository and do not require forking
zephyr to add support for proprietary boards.

F. The West Meta-Build System

West is a python application developed to manage and
automate Zephyr’s Cmake build system. West can be used to
automate devicetree overlay application for a particular board.
This allows the example applications that were developed for
Nordic development kits to work on third-party development
kits like the feather-compatible Particle Xenon boards used for
this paper by only changing the board parameter provided to
west. West can also automate running the cmake build, flashing
the new build onto the microcontroller, and attach a gdb
session to the newly programmed microcontroller. West will
also mange the libraries used in the project, including pulling in
Zephyr and the NCS. Libraries are specified, with a version
number, and a path to a git repository in the west manifest. On
first build west will clone all repositories, launch Cmake to
build each of them as libraries and link them in to your
application. This is a very powerful tool that can ease manually
controlled build system headaches.

VI. HOME-ASSISTANT

Home-assistant is a software platform intended for the
display and orchestration of the variety of IoT devices that can
be found in the home. The Home assistant front-end, named
Lovelace, provides a convenient dashboard for displaying the
current state of the system and configuring automations, add-
ons, integrations, and the Home-Assistant platform itself.

One of the most common methods of deploying Home-
Assistant, and also the one used for this paper, is to use the
Home-Assistant Operating System (HAOS) on a Raspberry Pi
single-board computer. HAOS is developed and maintained by
the Home-Assistant project as an easy means of deploying and
maintaining the Home-Assistant software.

A. Ingesting Mesh Events Packets with Home-Assistant

A custom integration was developed that opens the
Gateway Node’s USB/Serial connection and processes mesh
events into a Home-Assistant state_changed event. The
integration defines the Sensor Entities on initialization. For a
production-ready solution, the integration should be able to
create new entities whenever a new sensor node’s mesh event
is processed. For the sake of time, the Sensor Entities used in
this paper are hardcoded to be created during initialization with
friendly names and unit-of-measurement correlated to their
respective node addresses and sensor property IDs, whether or
not data has been received from them.

B. Home-Assistant Data Organization.

Each event within Home-Assistant is logged, with context,
in its internal database. By default, a local (w.r.t the Home-
Assistant server) SQLite instance is used to provide the
database. However, the “Recorder” integration which is
responsible for saving these events to the database can be
configured to use an alternative database, local or remote.
Database server software compatibility hinges on whether it is
supported by SQLAlchemy, which is what Recorder uses under
the hood. The usual suspects for linux-hosted databases,
PostgreSQL and Maria DB, are well supported [23].

Changes to states, such as an update event from our meshed
environmental sensors, are saved to the database’s “states”
table. Each new state is assigned a state_id (the index of this
table) and is inserted into this table with the entity domain of
the state, the entity_id the state belongs to (in the format
<entity domain>.<friendly name>), the value of the new state,
a JSON string containing the attributes of the state (e.g. the
sensor entity attributes are the user-facing name of entity, units
of measurement, and its device_class), the event_id of the
event that triggered the change (e.g. a state_changed event),
timestamps (last_changed, last_updated, and created), and the
state_id of the previous state. For the purposes of
environmental monitoring, the keys of interest are the created
time, the state value, the entity_id, and perhaps the attributes if
we do not know in advance which entity stores which
measurement type. That said, it is important to note that state
change data is considered by Home-Assistant to be short-term
data [24]. Home-Assistant retains short-term data for 10 days
(by default), after which it is purged on the next daily auto-
purge event. The retention time of short-term data can be
extended and/or the auto-purge even can be disabled, if storage
allows.

Home-Assistant provides a means of long-term storage for
Sensor Entities that implement a “state_class” of either
“measurement” or “total”. Every hour the minimum,
maximum, and mean of the state value for those entities over
the past hour is calculated and saved into the statistics table of
the database. There is also a “statistics_short_term” table which
uses the same index and keys as the “statistics” table, but is the
data is processed over 5 minute chunks instead of hourly. The
documentation for the short term statistics is sparse, but it
appears that this is, like the name implies, short term data that
will be periodically purged. Both the statistics and
statistics_short_term tables use a metadata_id to identify the
Sensor Entity that the statistics were generated from. The

metadata_id is the index of the “statistics_meta” table which
contains the statistic_id (in the same format as the state’s
entity_id), and unit of measure. Between one of the statistics
tables and the statistics_meta table, all the keys identified as
being relevant in the state table are also available here, just in a
format that has a smaller data footprint.

C. Exfiltrating Home-Assistant Data

There are two main ways to exfiltrate data from a Home-
Assistant instance: automated methods using Integrations and
Addon, or by interfacing with a database.

If your use-case requires only infrequent data retrieval, such
as reviewing long-term statistic data or saving monitoring data
from a short-lived (a few days at most) experiment, then
manually exfiltrating data from the database may be the
optimal solution. The SQLite Web Add-on is available with
one-click install in the in-dashboard Home-Assistant Add-on
store and provides an easy to use Web UI. Through this Web
UI you can browse through Home-Assistant’s database table
structure and contents. To exfiltrate the data, SQL Web offers
an SQL query editor that can be used to build a query, view the
output, and then save the output to JSON or CSV format. The
data used in this report was retrieved via this method.

If the use-case demands saving all datapoints (or the 5-
minute statistic_short_term values) and daily manual
exfiltration is not suitable, then state changes must be
exfiltrated to another storage solution, preferably as they occur.
For a well supported built-in solution with a Web UI, Home-
Assisant Operating System offers a Community Add-on that
installs and configures InfluxDB with Chronograf and
Kapacitor for administration and data exploration interfaces.
[25]. Once configured, the InfluxDB integration transfers each
state change to the InfluxDB instance. If a local instance of
InfluxDB is not desired, the InfluxDB integration can be
configured to transfer state changes to a remote instance of
InfluxDB [26]. Alternatively, the Home-Assistant’s core back-
end provides REST [27] and WebSocket [28] APIs that can be
polled by other services to receive state changes. This method
does have a higher overhead Bear in mind that even if Home-
Assistant is not used for data storage, it continues to provide
value as an aggregator of multi-domain data.

D. Alternatives to Home-Assistant

An alternative that was considered for this system was to
use the same library that interfaces with the Mesh Gateway
Node’s USB/Serial connection to either log directly to a CSV
file or offer the mesh events over a REST HTTP server (polled)
or client (push). The CSV approach is fast and easy to
implement, but effectively limits the gateway server to the role
of a datalogger. The REST endpoint or client method does have
merit and was considered as a back-up plan for this system if
Home-Assistant was found to not be suitable. A REST
endpoint can be polled by or push to Home-Assistant or other
popular monitoring and logging solutions such as Grafana with
Loki or InfluxDB. However, the main drawback to this
approach is initial setup. The raspberry pi needs to be setup and
hardened for use on a network of presumably modest security.
Then the Mesh Gateway Node interface application needs to be
configured to point to the correct USB device, with the correct

permissions. Finally, the monitoring/logging solution needs to
be configured to ingest data from the Mesh Gateway Server, or
vice-versa if the Mesh Gateway Server will be pushing data to
the monitoring/logging solution. This would be a reasonable
solution for a hobbyist or organization with staff that have the
ability and time for this setup.

VII. THE COMPLETE SYSTEM

The completed system looks much like the proposed
system. Sensor nodes measure temperature and humidity using
a low-cost I2C sensor. Bluetooth Mesh was used to
communicate amongst the sensor nodes which were physically
located in such a manner that the furthest node was unable to
reach the gateway node directly, requiring a Relay Node to
retransmit the Mesh Messages. A gateway node was used to
transmit mesh event data to the gateway server in lieu of using
the gateway’s on-board Bluetooth module. The gateway node
communicates with the gateway server via a USB CDC ACM
Uart, which is recognized by the gateway server as an emulated
serial port. Using this connection, a Home-assistant integration
library receives mesh events from the gateway node via a
simple serial protocol and translates them into state change
events on a Sensor Entity (if the new values differ from the old
values). Home assistant logs every state change event and state
value for short-term retention. For long term retention Home-
Assistant stores the average, minimum, and maximum values
of the Sensor Entity over one hour periods.

A. Exfiltrated Data

Figure 5: Home-Assistant Statistics Data from
Sensor Nodes

The chart in Figure 3 is built from the Home-Assistant one
hour statistics values gathered from the Mesh Sensor Nodes
over a roughly 24 hour period.

B. Provisioning the Mesh Network

By far the easiest method to provision the mesh network is
to use Nordic’s nRF Mesh application for Android and iPhone.
This application handles unprovisioned node discovery, OOB
authentication, network provisioning, binding of application
keys, assignment of virtual addresses, setting up publishers and
subscribers, and interfacing with the mesh server models
through an intuitive GUI. The application does require the
device to be within range of a Proxy Node in order for it to
function.

C. Home-Assistant Setup

Assuming the custom integration developed to translate
mesh events received from the Gateway Node’s USB serial
data was accepted as an official Integration, getting mesh data
into Home-Assistant would require little more than inserting
the Mesh Gateway Node’s USB port into a network accessible
computer running Home-Assistant, adding the integration, and
provisioning the mesh network. If the Integration was not
accepted, then installing it as a custom integration is as simple
as creating the “custom_components” directory in the Home-
Assistant configuration directory, cloning the custom
integration repository into it, and restarting Home-Assistant.
Further easing deployment, a Raspberry Pi with Home-
Assistant Operating system can be prepared in advance (with
any custom integrations pre-installed). All that would be
needed for on-site install would be to plug in power and
network connections and have the user follow the prompts on
the website to set up a supervisor account. The only other
configuration would be to provision the mesh network
(assuming the gateway and sensor nodes were not pre-
provisioned before issuing) and click a few buttons to start the
Bluetooth Mesh Sensor Integration and to confirm that the pre-
selected USB device is correct.

VIII. LESSONS LEARNED

A. Difficulties

A personal difficulty was that, before launching this
project, I had no experience with any part of the completed
system, except for designing the Gateway Node’s serial
protocol and writing the serial library to parse it into data
objects on the Gateway Server. The common theme was that
despite each layer of the system having some of the best
developer-facing documentation I have worked with, there was
always a large gap between the nearly-trivial examples and
what was needed to build my somewhat more complex
components.

B. Failures

The original intent was to use the Raspberry Pi 4 based
Gateway Server’s on-board Bluetooth module to communicate
with the bluetooth mesh via a Proxy Node. Home-Assistant
Operating System does not provide or document a means to
install the necessary kernel modules or the supporting BlueZ
(the Linux project’s out-of-kernel Bluetooth stack) daemons.
At this point Home-Assistant OS was swapped for the standard
Raspbian distribution, which is preconfigured with the correct
kernel modules and now has the mesh-enabled BlueZ tools
available in the package manager’s repositories. Initial success
was had by provisioning the device nodes through the BlueZ
mesh-cfgclient. However, minimalist documentation, the need
to communicate through DBUS, which I had never as much as
looked at, and a promising, but still a work-in-progress python
library combined to grind forward progress to a halt after well
over 40 hours invested. A third Particle Xenon was acquired
and the Gateway Node was completed in much less time.

IX. OPPORTUNITIES FOR FUTURE EFFORTS

Investigate power usage and capabilities of Low Power
Nodes, especially for battery operation.

Add more Client Models to Home-Assistant Integration and
Gateway Node to widen capability of Bluetooth Mesh control
and monitoring. Implement Server Models to Integration and
Node to give mesh node clients access to external-to-mesh
devices.

Implement and Document a Bluetooth Mesh Integration
that uses the Raspberry Pi onboard Bluetooth Module via
BlueZ to communicate with mesh Proxy Node. Enable
provisioning from Home-Assistant Web UI.

Investigate Existing Integrations to ingest data for other,
non-mesh, Microcontroller platforms. There is an integration
for automated discovery of and collecting data via Wi-Fi from
ESP32 and ESP8266 SoCs running the ESPHome firmware.
There is an integration for the Arduino Platform as well.

REFERENCES

[1] “MESH Temperature & Humidity,” Takeoff Point (A
Sony Group Company).

https://shop.meshprj.com/products/temperature-
humidity (accessed Sep. 23, 2021).

[2] “Blue PUCK T - Temperature Bluetooth Sensor |
Teltonika Telematics.”

https://teltonika-gps.com/product/blue-puck-t/ (accessed
Sep. 23, 2021).

[3] E. Standards, “EN 12830,” https://www.en-standard.eu.
https://www.en-standard.eu/ilnas-en-12830-

temperature-recorders-for-the-transport-storage-and-
distribution-of-temperature-sensitive-goods-tests-
performance-suitability/ (accessed Sep. 23, 2021).

[4] karinfly, “SONOFF SNZB-02 - ZigBee Temperature
And Humidity Sensor,” SONOFF Official, Jan. 13,

2021.
https://sonoff.tech/product/smart-home-security/snzb-

02/ (accessed Sep. 23, 2021).
[5] karinfly, “SONOFF ZBBridge - Smart Home Zigbee

Bridge,” SONOFF Official, Feb. 05, 2021.
https://sonoff.tech/product/smart-home-security/zbbridg

e/ (accessed Sep. 23, 2021).
[6] Q. T. Tran, D. D. Tran, D. Doan, and M. S. Nguyen,

“An Approach of BLE Mesh Network For Smart Home
Application,” in 2020 International Conference on

Advanced Computing and Applications (ACOMP), Nov.
2020, pp. 170–174. doi:

10.1109/ACOMP50827.2020.00034.
[7] ángela Hernández-Solana, D. Pérez-Díaz-De-Cerio, M.

García-Lozano, A. V. Bardají, and J.-L. Valenzuela,
“Bluetooth Mesh Analysis, Issues, and Challenges,”
IEEE Access, vol. 8, pp. 53784–53800, 2020, doi:

10.1109/ACCESS.2020.2980795.
[8] R. Rondón, A. Mahmood, S. Grimaldi, and M. Gidlund,

“Understanding the Performance of Bluetooth Mesh:
Reliability, Delay, and Scalability Analysis,” IEEE

Internet Things J., vol. 7, no. 3, pp. 2089–2101, Mar.
2020, doi: 10.1109/JIOT.2019.2960248.

[9] V. A. Zyulin, A. N. Semenova, A. K. Brazhnikova, and
D. A. Burilov, “Features of Building MESH Networks
Based on Bluetooth Low Energy 5.1 Technology,” in
2021 IEEE Conference of Russian Young Researchers
in Electrical and Electronic Engineering (ElConRus),

Jan. 2021, pp. 81–84. doi:
10.1109/ElConRus51938.2021.9396530.

[10] “Bluetooth Mesh, Thread, and Zigbee Network
Performance Benchmarking - Silicon Labs.”

https://www.silabs.com/wireless/multiprotocol/mesh-
performance (accessed Sep. 23, 2021).

[11] W. Rzepecki, Ł. Iwanecki, and P. Ryba, “IEEE 802.15.4
Thread Mesh Network – Data Transmission in Harsh

Environment,” in 2018 6th International Conference on
Future Internet of Things and Cloud Workshops

(FiCloudW), Aug. 2018, pp. 42–47. doi: 10.1109/W-
FiCloud.2018.00013.

[12] É. Morin, M. Maman, R. Guizzetti, and A. Duda,
“Comparison of the Device Lifetime in Wireless

Networks for the Internet of Things,” IEEE Access, vol.
5, pp. 7097–7114, 2017, doi:

10.1109/ACCESS.2017.2688279.
[13] “Nordic Semiconductor Infocenter - nRF52840 Product

Specification.”
https://infocenter.nordicsemi.com/index.jsp?topic=

%2Fstruct_nrf52%2Fstruct%2Fnrf52840.html (accessed
Dec. 08, 2021).

[14] “Assigned Numbers,” Bluetooth® Technology Website.
https://www.bluetooth.com/specifications/assigned-

numbers/ (accessed Dec. 08, 2021).
[15] M. Woolley, “Bluetooth Mesh Models - A Technical

Overview.” Mar. 27, 2019. Accessed: Dec. 08, 2021.
[Online]. Available:

https://www.bluetooth.com/bluetooth-resources/bluetoot
h-mesh-models/

[16] “GATT Specification Supplement 5,” Bluetooth®
Technology Website.

https://www.bluetooth.com/specifications/specs/gatt-
specification-supplement-5/ (accessed Oct. 14, 2021).

[17] Mesh Working Group, “Mesh Device Properties 2.”
Bluetooth® Technology Website. Accessed: Oct. 13,

2021. [Online]. Available:
https://www.bluetooth.com/specifications/specs/mesh-

model-1-0-1/
[18] “Mesh Profile 1.0.1,” Bluetooth® Technology Website.

https://www.bluetooth.com/specifications/specs/mesh-
profile-1-0-1/ (accessed Oct. 12, 2021).

[19] “Mesh Model 1.0.1.” Bluetooth® Technology Website.
Accessed: Oct. 13, 2021. [Online]. Available:

https://www.bluetooth.com/specifications/specs/mesh-
model-1-0-1/

[20] “CERT/CC Vulnerability Note VU#799380.”
https://www.kb.cert.org (accessed Dec. 08, 2021).

[21] “Provisioning — Zephyr Project Documentation.”
https://developer.nordicsemi.com/nRF_Connect_SDK/d

oc/1.7.1/zephyr/reference/bluetooth/mesh/
provisioning.html#bluetooth-mesh-provisioning

(accessed Dec. 08, 2021).
[22] “Welcome to the nRF Connect SDK! — nRF Connect

SDK 1.7.1 documentation.”
https://developer.nordicsemi.com/nRF_Connect_SDK/d

oc/1.7.1/nrf/index.html (accessed Dec. 08, 2021).
[23] H. Assistant, “Recorder,” Home Assistant.
https://www.home-assistant.io/integrations/recorder/

(accessed Dec. 06, 2021).
[24] “Data | Home Assistant.” https://data.home-

assistant.io/docs/data (accessed Dec. 06, 2021).
[25] Home Assistant Community Add-on: InfluxDB. Home

Assistant Community Add-ons, 2021. Accessed: Dec.
07, 2021. [Online]. Available:

https://github.com/hassio-addons/addon-influxdb/blob/7
64b622119f94135739783d5d9cab8b27e349cde/

influxdb/DOCS.md
[26] H. Assistant, “InfluxDB,” Home Assistant.

https://www.home-assistant.io/integrations/influxdb/
(accessed Dec. 07, 2021).

[27] “REST API | Home Assistant Developer Docs.”
https://developers.home-assistant.io/docs/api/rest

(accessed Dec. 07, 2021).
[28] “WebSocket API | Home Assistant Developer Docs.”

https://developers.home-assistant.io/docs/api/websocket
(accessed Dec. 07, 2021).

	I. Introduction
	II. Market Survey
	A. MESH Project Temperature and Humidity Sensor [1]
	B. Blue PUCK T [2]
	C. Sonoff Zigbee Sensor and Bridge [4]

	III. Literature Survey
	A. An Approach of BLE Mesh Network For Smart Home Application [6]
	1) Problem
	2) Contributions
	3) Relevance

	B. Bluetooth Mesh Analysis, Issues, and Challenges [7]
	1) Problem
	2) Contributions
	3) Relevance

	C. Features of Building MESH Networks Based on Bluetooth Low Energy 5.1 Technology [9]
	1) Problem
	2) Contributions
	3) Relevance

	D. IEEE 802.15.4 Thread Mesh Network – Data Transmission in Harsh Environment [11]
	1) Problem
	2) Contributions
	3) Relevance

	E. Comparison of the Device Lifetime in Wireless Networks for the Internet of Things [12]
	1) Problem
	2) Contributions
	3) Relevance

	F. Understanding the Performance of Bluetooth Mesh: Reliability, Delay, and Scalability Analysis [8]
	1) Problem
	2) Contributions
	3) Relevance

	IV. Bluetooth MESH
	A. Bluetooth Mesh Node Roles
	1) Relay Node
	2) Friend Node
	3) Low Power Node
	4) Proxy Node

	B. Bluetooth Mesh Data Model
	C. Bluetooth Mesh Dataflow
	D. Provisioning

	V. Nordic nRF Connect SDK & Zephyr OS
	A. Zephyr Bluetooth Stack
	B. Bluetooth Mesh Profile
	C. USB Device Stack
	D. Threading
	E. Hardware Abstraction
	F. The West Meta-Build System

	VI. Home-Assistant
	A. Ingesting Mesh Events Packets with Home-Assistant
	B. Home-Assistant Data Organization.
	C. Exfiltrating Home-Assistant Data
	D. Alternatives to Home-Assistant

	VII. The Complete System
	A. Exfiltrated Data
	B. Provisioning the Mesh Network
	C. Home-Assistant Setup

	VIII. Lessons Learned
	A. Difficulties
	B. Failures

	IX. Opportunities for Future Efforts
	References

